{"title":"Supramolecular Crystals based Fast Single Ion Conductor for Long-cycling Solid Zinc Batteries.","authors":"Ze Chen, Zhaodong Huang, Chenlu Wang, Dedi Li, Qi Xiong, Yanbo Wang, Yue Hou, Yanlei Wang, Ao Chen, Hongyan He, Chunyi Zhi","doi":"10.1002/anie.202406683","DOIUrl":null,"url":null,"abstract":"<p><p>The solid polymer electrolytes (SPEs) used in Zn-ion batteries (ZIBs) have low ionic conductivity due to the sluggish dynamics of polymer segments. Thus, only short-range movement of cations is supported, leading to low ionic conductivity and Zn2+ transference (tZn2+). Zn-based supramolecular crystals (ZMCs) have considerable potential for supporting long-distance Zn2+ transport; however, their efficiency in ZIBs has not been explored. The present study developed a ZMC consisting of succinonitrile (SN) and zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2), with a structural formula identified as Zn(TFSI)2SN3. The ZMC has ordered three-dimensional tunnels in the crystalline lattices for ion conduction, providing high ionic conductivities (6.02 × 10-4 S cm-1 at 25 °C and 3.26 × 10-5 S cm-1 at -35 °C) and a high tZn2+ (0.97). We demonstrated that a Zn‖Zn symmetrical battery with ZMCs has long-term cycling stability (1200 h) and a dendrite-free Zn plating/stripping process, even at a high plating areal density of 3 mAh cm-2. The as-fabricated solid-state Zn battery exhibited excellent performance, including high discharge capacity (1.52 mAh cm-2), long-term cycling stability (83.6% capacity retention after 70000 cycles (7 months)), wide temperature adaptability (-30 to 50 °C) and fast charging ability.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202406683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The solid polymer electrolytes (SPEs) used in Zn-ion batteries (ZIBs) have low ionic conductivity due to the sluggish dynamics of polymer segments. Thus, only short-range movement of cations is supported, leading to low ionic conductivity and Zn2+ transference (tZn2+). Zn-based supramolecular crystals (ZMCs) have considerable potential for supporting long-distance Zn2+ transport; however, their efficiency in ZIBs has not been explored. The present study developed a ZMC consisting of succinonitrile (SN) and zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2), with a structural formula identified as Zn(TFSI)2SN3. The ZMC has ordered three-dimensional tunnels in the crystalline lattices for ion conduction, providing high ionic conductivities (6.02 × 10-4 S cm-1 at 25 °C and 3.26 × 10-5 S cm-1 at -35 °C) and a high tZn2+ (0.97). We demonstrated that a Zn‖Zn symmetrical battery with ZMCs has long-term cycling stability (1200 h) and a dendrite-free Zn plating/stripping process, even at a high plating areal density of 3 mAh cm-2. The as-fabricated solid-state Zn battery exhibited excellent performance, including high discharge capacity (1.52 mAh cm-2), long-term cycling stability (83.6% capacity retention after 70000 cycles (7 months)), wide temperature adaptability (-30 to 50 °C) and fast charging ability.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.