Zhiqiang Cao, Lama Ghazi, Claudia Mastrogiacomo, Laura Forastiere, F Perry Wilson, Fan Li
{"title":"Using Overlap Weights to Address Extreme Propensity Scores in Estimating Restricted Mean Counterfactual Survival Times.","authors":"Zhiqiang Cao, Lama Ghazi, Claudia Mastrogiacomo, Laura Forastiere, F Perry Wilson, Fan Li","doi":"10.1093/aje/kwae416","DOIUrl":null,"url":null,"abstract":"<p><p>While inverse probability of treatment weighting (IPTW) is a commonly used approach for treatment comparisons in observational data, the resulting estimates may be subject to bias and excessively large variance under lack of overlap. By smoothly down-weighting units with extreme propensity scores, i.e., those that are close (or equal) to zero or one, overlap weighting (OW) can help mitigate the bias and variance issues associated with IPTW. Although theoretical and simulation results have supported the use of OW with continuous and binary outcomes, its performance with survival outcomes remains to be further investigated, especially when the target estimand is defined based on the restricted mean survival time (RMST). We combine propensity score weighting and inverse probability of censoring weighting to estimate the restricted mean counterfactual survival times, and provide computationally-efficient variance estimators when the propensity scores are estimated by logistic regression and the censoring process is estimated by Cox regression. We conduct simulations to compare the performance of weighting methods in terms of bias, variance, and 95% interval coverage, under various degrees of overlap. Under moderate and weak overlap, we demonstrate the advantage of OW over IPTW, trimming and truncation, with respect to bias, variance, and coverage when estimating RMST.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae416","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
While inverse probability of treatment weighting (IPTW) is a commonly used approach for treatment comparisons in observational data, the resulting estimates may be subject to bias and excessively large variance under lack of overlap. By smoothly down-weighting units with extreme propensity scores, i.e., those that are close (or equal) to zero or one, overlap weighting (OW) can help mitigate the bias and variance issues associated with IPTW. Although theoretical and simulation results have supported the use of OW with continuous and binary outcomes, its performance with survival outcomes remains to be further investigated, especially when the target estimand is defined based on the restricted mean survival time (RMST). We combine propensity score weighting and inverse probability of censoring weighting to estimate the restricted mean counterfactual survival times, and provide computationally-efficient variance estimators when the propensity scores are estimated by logistic regression and the censoring process is estimated by Cox regression. We conduct simulations to compare the performance of weighting methods in terms of bias, variance, and 95% interval coverage, under various degrees of overlap. Under moderate and weak overlap, we demonstrate the advantage of OW over IPTW, trimming and truncation, with respect to bias, variance, and coverage when estimating RMST.
期刊介绍:
The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research.
It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.