Machine learning for forecasting initial seizure onset in neonatal hypoxic-ischemic encephalopathy.

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY Epilepsia Pub Date : 2024-11-04 DOI:10.1111/epi.18163
Danilo Bernardo, Jonathan Kim, Marie-Coralie Cornet, Adam L Numis, Aaron Scheffler, Vikram R Rao, Edilberto Amorim, Hannah C Glass
{"title":"Machine learning for forecasting initial seizure onset in neonatal hypoxic-ischemic encephalopathy.","authors":"Danilo Bernardo, Jonathan Kim, Marie-Coralie Cornet, Adam L Numis, Aaron Scheffler, Vikram R Rao, Edilberto Amorim, Hannah C Glass","doi":"10.1111/epi.18163","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study was undertaken to develop a machine learning (ML) model to forecast initial seizure onset in neonatal hypoxic-ischemic encephalopathy (HIE) utilizing clinical and quantitative electroencephalogram (QEEG) features.</p><p><strong>Methods: </strong>We developed a gradient boosting ML model (Neo-GB) that utilizes clinical features and QEEG to forecast time-dependent seizure risk. Clinical variables included cord blood gas values, Apgar scores, gestational age at birth, postmenstrual age (PMA), postnatal age, and birth weight. QEEG features included statistical moments, spectral power, and recurrence quantification analysis (RQA) features. We trained and evaluated Neo-GB on a University of California, San Francisco (UCSF) neonatal HIE dataset, augmenting training with publicly available neonatal electroencephalogram (EEG) datasets from Cork University and Helsinki University Hospitals. We assessed the performance of Neo-GB at providing dynamic and static forecasts with diagnostic performance metrics and incident/dynamic area under the receiver operating characteristic curve (iAUC) analyses. Model explanations were performed to assess contributions of QEEG features and channels to model predictions.</p><p><strong>Results: </strong>The UCSF dataset included 60 neonates with HIE (30 with seizures). In subject-level static forecasting at 30 min after EEG initiation, baseline Neo-GB without time-dependent features had an area under the receiver operating characteristic curve (AUROC) of .76 and Neo-GB with time-dependent features had an AUROC of .89. In time-dependent evaluation of the initial seizure onset within a 24-h seizure occurrence period, dynamic forecast with Neo-GB demonstrated median iAUC = .79 (interquartile range [IQR] .75-.82) and concordance index (C-index) = .82, whereas baseline static forecast at 30 min demonstrated median iAUC = .75 (IQR .72-.76) and C-index = .69. Model explanation analysis revealed that spectral power, PMA, RQA, and cord blood gas values made the strongest contributions in driving Neo-GB predictions. Within the most influential EEG channels, as the preictal period advanced toward eventual seizure, there was an upward trend in broadband spectral power.</p><p><strong>Significance: </strong>This study demonstrates an ML model that combines QEEG with clinical features to forecast time-dependent risk of initial seizure onset in neonatal HIE. Spectral power evolution is an early EEG marker of seizure risk in neonatal HIE.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18163","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study was undertaken to develop a machine learning (ML) model to forecast initial seizure onset in neonatal hypoxic-ischemic encephalopathy (HIE) utilizing clinical and quantitative electroencephalogram (QEEG) features.

Methods: We developed a gradient boosting ML model (Neo-GB) that utilizes clinical features and QEEG to forecast time-dependent seizure risk. Clinical variables included cord blood gas values, Apgar scores, gestational age at birth, postmenstrual age (PMA), postnatal age, and birth weight. QEEG features included statistical moments, spectral power, and recurrence quantification analysis (RQA) features. We trained and evaluated Neo-GB on a University of California, San Francisco (UCSF) neonatal HIE dataset, augmenting training with publicly available neonatal electroencephalogram (EEG) datasets from Cork University and Helsinki University Hospitals. We assessed the performance of Neo-GB at providing dynamic and static forecasts with diagnostic performance metrics and incident/dynamic area under the receiver operating characteristic curve (iAUC) analyses. Model explanations were performed to assess contributions of QEEG features and channels to model predictions.

Results: The UCSF dataset included 60 neonates with HIE (30 with seizures). In subject-level static forecasting at 30 min after EEG initiation, baseline Neo-GB without time-dependent features had an area under the receiver operating characteristic curve (AUROC) of .76 and Neo-GB with time-dependent features had an AUROC of .89. In time-dependent evaluation of the initial seizure onset within a 24-h seizure occurrence period, dynamic forecast with Neo-GB demonstrated median iAUC = .79 (interquartile range [IQR] .75-.82) and concordance index (C-index) = .82, whereas baseline static forecast at 30 min demonstrated median iAUC = .75 (IQR .72-.76) and C-index = .69. Model explanation analysis revealed that spectral power, PMA, RQA, and cord blood gas values made the strongest contributions in driving Neo-GB predictions. Within the most influential EEG channels, as the preictal period advanced toward eventual seizure, there was an upward trend in broadband spectral power.

Significance: This study demonstrates an ML model that combines QEEG with clinical features to forecast time-dependent risk of initial seizure onset in neonatal HIE. Spectral power evolution is an early EEG marker of seizure risk in neonatal HIE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测新生儿缺氧缺血性脑病初期发作的机器学习。
研究目的本研究旨在开发一种机器学习(ML)模型,利用临床和定量脑电图(QEEG)特征预测新生儿缺氧缺血性脑病(HIE)的初始癫痫发作:我们开发了一种梯度提升 ML 模型(Neo-GB),利用临床特征和 QEEG 预测随时间变化的癫痫发作风险。临床变量包括脐带血气值、Apgar 评分、胎龄、经后年龄 (PMA)、产后年龄和出生体重。QEEG 特征包括统计矩、频谱功率和复发量化分析 (RQA) 特征。我们在加州大学旧金山分校(UCSF)的新生儿 HIE 数据集上对 Neo-GB 进行了训练和评估,并利用科克大学和赫尔辛基大学医院公开提供的新生儿脑电图(EEG)数据集对训练进行了补充。我们通过诊断性能指标和接收器工作特征曲线下的事件/动态面积(iAUC)分析,评估了 Neo-GB 在提供动态和静态预测方面的性能。对模型进行了解释,以评估 QEEG 特征和通道对模型预测的贡献:加州大学旧金山分校的数据集包括 60 名患有 HIE 的新生儿(30 名患有癫痫发作)。在脑电图开始后 30 分钟的受试者级静态预测中,无时间依赖特征的基线 Neo-GB 的接收器操作特征曲线下面积 (AUROC) 为 0.76,而有时间依赖特征的 Neo-GB 的接收器操作特征曲线下面积 (AUROC) 为 0.89。在对 24 小时发作发生期内的初始发作进行时间依赖性评估时,使用 Neo-GB 进行动态预测的中位 iAUC = .79(四分位距 [IQR] .75-.82)和一致性指数 (C-index) = .82,而 30 分钟的基线静态预测的中位 iAUC = .75(四分位距 [IQR] .72-.76)和 C-index = .69。模型解释分析表明,频谱功率、PMA、RQA 和脐带血气体值对 Neo-GB 预测的贡献最大。在最有影响力的脑电图通道中,随着发作前期向最终发作的推进,宽带频谱功率呈上升趋势:本研究展示了一种结合 QEEG 和临床特征的多重多重模式,可预测新生儿 HIE 中随时间变化的初始癫痫发作风险。频谱功率演变是新生儿 HIE 癫痫发作风险的早期脑电图标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
期刊最新文献
Automatic responsiveness testing in epilepsy with wearable technology: The ARTiE Watch. WONOEP appraisal: Targeted therapy development for early onset epilepsies. Issue Information Association of cognitive and structural correlates of brain aging and incident epilepsy. The Framingham Heart Study. Epilepsia – November 2024 Announcements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1