{"title":"Maternal Supplementation Spermidine During Gestation Improves Placental Angiogenesis and Reproductive Performance of High Prolific Sows.","authors":"Bingbing Duan, Sijiao Ran, Lin Wu, Tianci Dai, Jian Peng, Yuanfei Zhou","doi":"10.1016/j.jnutbio.2024.109792","DOIUrl":null,"url":null,"abstract":"<p><p>Spermidine (SPD) is a widely recognized polyamine compound found in mammalian cells and plays a key role in various cellular processes. We propose that SPD may enhance placental vascular development in pregnant sows, leading to increased birth weight of piglets. Six hundred and nine sows at 60 days of gestation were randomly assigned into a basal diet (CON group), basal diet supplemented 10 mg/kg of SPD (SPD1 group), and basal diet supplemented 20 mg/kg of SPD (SPD2 group), respectively. Compared with the CON, SPD1 significantly increased the average number of healthy piglets per litter and the placental efficiency (P < 0.05), while the average number of mummified fetus per litter and the percentage of weak piglets significantly decreased (P < 0.05). In the plasma metabolomics, SPD content in plasma of sows (P = 0.075) and umbilical cord plasma of piglets (P = 0.078) had an increasing trend in response to SPD1. Furthermore, SPD1 increased the expression of the vascular endothelial cell marker protein, platelet endothelial cell adhesionmolecule-1 (PECAM-1/CD31) and the density of placental stromal vessels (P < 0.05). Moreover, as compared to CON, SPD2 significantly decreased the average number of mummified fetus per litter (P < 0.05), while the placental efficiency and the expression of amino acid transporter solute carrier (SLC) family 7, member7 (SLC7A7) and glucose transporters SLC2A2) and SLC5A4 in placental tissue significantly increased (P < 0.05). These results suggest that maternal supplementation of SPD during pregnancy increased healthy litter number, and promoted placental tissue development. Our findings provide evidence that maternal SPD has the potential to improve the production performance of sows.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109792"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2024.109792","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spermidine (SPD) is a widely recognized polyamine compound found in mammalian cells and plays a key role in various cellular processes. We propose that SPD may enhance placental vascular development in pregnant sows, leading to increased birth weight of piglets. Six hundred and nine sows at 60 days of gestation were randomly assigned into a basal diet (CON group), basal diet supplemented 10 mg/kg of SPD (SPD1 group), and basal diet supplemented 20 mg/kg of SPD (SPD2 group), respectively. Compared with the CON, SPD1 significantly increased the average number of healthy piglets per litter and the placental efficiency (P < 0.05), while the average number of mummified fetus per litter and the percentage of weak piglets significantly decreased (P < 0.05). In the plasma metabolomics, SPD content in plasma of sows (P = 0.075) and umbilical cord plasma of piglets (P = 0.078) had an increasing trend in response to SPD1. Furthermore, SPD1 increased the expression of the vascular endothelial cell marker protein, platelet endothelial cell adhesionmolecule-1 (PECAM-1/CD31) and the density of placental stromal vessels (P < 0.05). Moreover, as compared to CON, SPD2 significantly decreased the average number of mummified fetus per litter (P < 0.05), while the placental efficiency and the expression of amino acid transporter solute carrier (SLC) family 7, member7 (SLC7A7) and glucose transporters SLC2A2) and SLC5A4 in placental tissue significantly increased (P < 0.05). These results suggest that maternal supplementation of SPD during pregnancy increased healthy litter number, and promoted placental tissue development. Our findings provide evidence that maternal SPD has the potential to improve the production performance of sows.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.