Mei-Yan Ma, Gang Deng, Wen-Zhuo Zhu, Ming Sun, Lu-Yi Jiang, Wei-Hui Li, Yuan-Bin Liu, Lin Guo, Bao-Liang Song, Xiaolu Zhao
{"title":"Defects in CYB5A and CYB5B impact sterol-C4 oxidation in cholesterol biosynthesis and demonstrate regulatory roles of dimethyl sterols.","authors":"Mei-Yan Ma, Gang Deng, Wen-Zhuo Zhu, Ming Sun, Lu-Yi Jiang, Wei-Hui Li, Yuan-Bin Liu, Lin Guo, Bao-Liang Song, Xiaolu Zhao","doi":"10.1016/j.celrep.2024.114912","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome b5 (CYB5) is a hemoprotein crucial for electron transfer to oxygenases. Although microsomal CYB5A is required for sterol C4-demethylation in vitro, cholesterol biosynthesis remains intact in Cyb5a knockout mice. Here, we show that knockout of mitochondrial CYB5B, rather than CYB5A, blocks cholesterol biosynthesis at the sterol-C4 oxidation step in HeLa cells, causing an accumulation of testis meiosis-activating sterol (T-MAS) and dihydro-T-MAS. Surprisingly, liver-specific Cyb5b knockout (L-Cyb5b<sup>-/-</sup>) mice exhibit normal cholesterol metabolism. Further knockdown of Cyb5a in L-Cyb5b<sup>-/-</sup> (L-Cyb5b<sup>-/-</sup>/short hairpin [sh]Cyb5a) mice leads to a marked accumulation of T-MAS and dihydro-T-MAS, indicating that either CYB5A or CYB5B is required for sterol C4-demethylation. The L-Cyb5b<sup>-/-</sup>/shCyb5a mice are largely normal, with lower sterol regulatory element-binding protein (SREBP)-target gene expression during refeeding and higher liver triglyceride levels while fasting, as T-MAS and dihydro-T-MAS inhibit the SREBP pathway and activate the PPARγ pathway. In summary, CYB5A and CYB5B compensate for sterol C4-demethylation, and T-MAS and dihydro-T-MAS can modulate the SREBP and PPARγ pathways.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114912"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114912","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochrome b5 (CYB5) is a hemoprotein crucial for electron transfer to oxygenases. Although microsomal CYB5A is required for sterol C4-demethylation in vitro, cholesterol biosynthesis remains intact in Cyb5a knockout mice. Here, we show that knockout of mitochondrial CYB5B, rather than CYB5A, blocks cholesterol biosynthesis at the sterol-C4 oxidation step in HeLa cells, causing an accumulation of testis meiosis-activating sterol (T-MAS) and dihydro-T-MAS. Surprisingly, liver-specific Cyb5b knockout (L-Cyb5b-/-) mice exhibit normal cholesterol metabolism. Further knockdown of Cyb5a in L-Cyb5b-/- (L-Cyb5b-/-/short hairpin [sh]Cyb5a) mice leads to a marked accumulation of T-MAS and dihydro-T-MAS, indicating that either CYB5A or CYB5B is required for sterol C4-demethylation. The L-Cyb5b-/-/shCyb5a mice are largely normal, with lower sterol regulatory element-binding protein (SREBP)-target gene expression during refeeding and higher liver triglyceride levels while fasting, as T-MAS and dihydro-T-MAS inhibit the SREBP pathway and activate the PPARγ pathway. In summary, CYB5A and CYB5B compensate for sterol C4-demethylation, and T-MAS and dihydro-T-MAS can modulate the SREBP and PPARγ pathways.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.