{"title":"Analyzing the causal role of blood cells in aging: a Mendelian randomization study.","authors":"Jingjing Zhang, Xin Zhang, Boan Xiao, Jiecai Ouyang, Peng Wang, Xiaobin Peng","doi":"10.1007/s10522-024-10148-0","DOIUrl":null,"url":null,"abstract":"<p><p>Blood cells are crucial components of the human body, closely linked to the aging process. This study aims to explore the causal relationship between 91 blood cell phenotypes and aging through Mendelian randomization (MR) analysis. Exposure data from genome-wide association studies (GWAS) was extracted from the GWAS of blood cell perturbation phenotypes in 2,600 European individuals. Initial analysis utilized GWAS data related to aging from the GWAS Catalog database GCST90014288, with inverse-variance weighting as the primary method for causal analysis. Sensitivity analyses included Cochran's Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis. For significant associations, replication and meta-analysis were conducted using independent aging GWAS data from GCST90014300. Initial analysis revealed that environmental peroxide-impacted red blood cells and ciprofloxacin-impacted reticulocytes accelerated aging. Additionally, elevated neutrophil levels were found to accelerate aging, while LiCl-impacted neutrophils reduced aging risk. Replication and meta-analysis showed consistent results: ciprofloxacin-impacted reticulocytes and elevated neutrophil levels increased the risk of aging, while LiCl-impacted neutrophils reduced the risk. RBCs showed no significant impact on aging progression. Sensitivity analyses confirmed the robustness and reliability of these positive findings. Our study provides evidence of a causal relationship between three blood cell disturbance phenotypes and human aging.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-024-10148-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Blood cells are crucial components of the human body, closely linked to the aging process. This study aims to explore the causal relationship between 91 blood cell phenotypes and aging through Mendelian randomization (MR) analysis. Exposure data from genome-wide association studies (GWAS) was extracted from the GWAS of blood cell perturbation phenotypes in 2,600 European individuals. Initial analysis utilized GWAS data related to aging from the GWAS Catalog database GCST90014288, with inverse-variance weighting as the primary method for causal analysis. Sensitivity analyses included Cochran's Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis. For significant associations, replication and meta-analysis were conducted using independent aging GWAS data from GCST90014300. Initial analysis revealed that environmental peroxide-impacted red blood cells and ciprofloxacin-impacted reticulocytes accelerated aging. Additionally, elevated neutrophil levels were found to accelerate aging, while LiCl-impacted neutrophils reduced aging risk. Replication and meta-analysis showed consistent results: ciprofloxacin-impacted reticulocytes and elevated neutrophil levels increased the risk of aging, while LiCl-impacted neutrophils reduced the risk. RBCs showed no significant impact on aging progression. Sensitivity analyses confirmed the robustness and reliability of these positive findings. Our study provides evidence of a causal relationship between three blood cell disturbance phenotypes and human aging.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.