Dan Luo, Yonghui Hou, Jiheng Zhan, Yu Hou, Zenglu Wang, Xing Li, Lili Sui, Shudong Chen, Dingkun Lin
{"title":"Bu Shen Huo Xue Formula Provides Neuroprotection Against Spinal Cord Injury by Inhibiting Oxidative Stress by Activating the Nrf2 Signaling Pathway.","authors":"Dan Luo, Yonghui Hou, Jiheng Zhan, Yu Hou, Zenglu Wang, Xing Li, Lili Sui, Shudong Chen, Dingkun Lin","doi":"10.2147/DDDT.S487307","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Spinal cord injury (SCI) is an irreversible neurological disease that can result in severe neurological dysfunction. The Bu Shen Huo Xue Formula (BSHXF) has been clinically shown to assist in the recovery of limb function in patients with SCI. However, the underlying mechanisms of BSHXF's therapeutic effects remain unclear. This study aimed to evaluate the effects of BSHXF in a mouse model of SCI and to identify potential therapeutic targets.</p><p><strong>Methods: </strong>The composition of BSHXF was analyzed using high-performance liquid chromatography (HPLC). In vivo, SCI was induced in mice following established protocols, followed by administration of BSHXF. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB) and footprint tests. Levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were quantified with specific assay kits. Protein expression analysis was performed using Western blot and immunofluorescence. Additionally, reactive oxygen species (ROS) levels and apoptosis rates were evaluated with dedicated staining kits. In vitro, neurons were exposed to lipopolysaccharide (LPS) to investigate the effects of BSHXF on neuronal oxidative stress. The protective effects of BSHXF against LPS-induced neuronal injury were examined through RT-PCR, Western blot, and immunofluorescence.</p><p><strong>Results: </strong>The eight primary bioactive constituents of BSHXF were identified using HPLC. BSHXF significantly reduced tissue damage and enhanced functional recovery following SCI. Meanwhile, BSHXF treatment led to significant reductions in oxidative stress and apoptosis rates. It also reversed neuronal loss and reduced glial scarring after SCI. LPS exposure induced neuronal apoptosis and axonal degeneration; however, after intervention with BSHXF, neuronal damage was reduced, and the protective effects of BSHXF were mediated by the activation of the Nrf2 pathway.</p><p><strong>Conclusion: </strong>BSHXF decreased tissue damage and enhanced functional recovery after SCI by protecting neurons against oxidative stress and apoptosis. The effects of BSHXF on SCI may be related to the activation of the Nrf2 pathway.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"4779-4797"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S487307","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Spinal cord injury (SCI) is an irreversible neurological disease that can result in severe neurological dysfunction. The Bu Shen Huo Xue Formula (BSHXF) has been clinically shown to assist in the recovery of limb function in patients with SCI. However, the underlying mechanisms of BSHXF's therapeutic effects remain unclear. This study aimed to evaluate the effects of BSHXF in a mouse model of SCI and to identify potential therapeutic targets.
Methods: The composition of BSHXF was analyzed using high-performance liquid chromatography (HPLC). In vivo, SCI was induced in mice following established protocols, followed by administration of BSHXF. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB) and footprint tests. Levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were quantified with specific assay kits. Protein expression analysis was performed using Western blot and immunofluorescence. Additionally, reactive oxygen species (ROS) levels and apoptosis rates were evaluated with dedicated staining kits. In vitro, neurons were exposed to lipopolysaccharide (LPS) to investigate the effects of BSHXF on neuronal oxidative stress. The protective effects of BSHXF against LPS-induced neuronal injury were examined through RT-PCR, Western blot, and immunofluorescence.
Results: The eight primary bioactive constituents of BSHXF were identified using HPLC. BSHXF significantly reduced tissue damage and enhanced functional recovery following SCI. Meanwhile, BSHXF treatment led to significant reductions in oxidative stress and apoptosis rates. It also reversed neuronal loss and reduced glial scarring after SCI. LPS exposure induced neuronal apoptosis and axonal degeneration; however, after intervention with BSHXF, neuronal damage was reduced, and the protective effects of BSHXF were mediated by the activation of the Nrf2 pathway.
Conclusion: BSHXF decreased tissue damage and enhanced functional recovery after SCI by protecting neurons against oxidative stress and apoptosis. The effects of BSHXF on SCI may be related to the activation of the Nrf2 pathway.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.