Lactobacillus Plantarum and its Derived Bacteriocin Exhibits Potent Antitumor Activity against Esophageal Cancer Cells.

IF 1.5 Q3 MEDICINE, RESEARCH & EXPERIMENTAL International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI:10.22088/IJMCM.BUMS.13.3.286
Salam Husam Sabri, Saeed Esmaeili Mahani, Ahmed Majeed Al-Shammari, Khalid Jaber Kadhum Luti, Mehdi Abbas Nejad
{"title":"Lactobacillus Plantarum and its Derived Bacteriocin Exhibits Potent Antitumor Activity against Esophageal Cancer Cells.","authors":"Salam Husam Sabri, Saeed Esmaeili Mahani, Ahmed Majeed Al-Shammari, Khalid Jaber Kadhum Luti, Mehdi Abbas Nejad","doi":"10.22088/IJMCM.BUMS.13.3.286","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal cancer presents a challenge in gastroenterology and traditional chemotherapy and radiation therapy have less therapeutic activity with severe side effects. Thus, there is need for effective and safer alternatives. Probiotics, particularly <i>Lactobacillus plantarum</i> (<i>L</i>. <i>plantarum</i>) and its bacteriocins, might prevent or treat esophageal tumors. We aimed to investigate the use of <i>L. plantarum</i> and its bacteriocin as esophageal cancer therapy. First, we obtained 100 isolates of Lactobacillus spp. from dairy product samples. They screened for bacteriocin production and identified by PCR and gel electrophoresis for 16S ribosomal RNA gene. Bacteriocin was partially purified and tested against two different pathogens. Both L. plantarum and its bacteriocin were examined for cytotoxicity in vitro against esophageal cancer cell line (SK-GT4) and normal rat embryo fibroblast (REF) cells by MTT assay. Apoptosis was determined using an acridine orange /propidium iodide assay. The results showed that the isolate gives a high bacteriocin production about (2000AU/ml). In addition to antimicrobial activity, there was significant anticancer activity. <i>L</i>. <i>plantarum</i> had an IC<sub>50</sub> of 51.01 CFU/ml and bacteriocin IC<sub>50</sub> of 281.9 AU/ml against cancer cells. Both showed no cytotoxicity towards normal REF cells. Furthermore, there was a significant increase in apoptosis induction and in caspase-3 activity in cancer cells treated with L. plantarum and bacteriocin compared to untreated cells. In conclusion, <i>L. plantarum</i> and its bacteriocin show potent killing effect against esophageal cancer cells with no effect against normal cells indicating safety and selectivity with activation of apoptosis via caspase-3 induction suggesting potential clinical advantage.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"286-302"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530945/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.13.3.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Esophageal cancer presents a challenge in gastroenterology and traditional chemotherapy and radiation therapy have less therapeutic activity with severe side effects. Thus, there is need for effective and safer alternatives. Probiotics, particularly Lactobacillus plantarum (L. plantarum) and its bacteriocins, might prevent or treat esophageal tumors. We aimed to investigate the use of L. plantarum and its bacteriocin as esophageal cancer therapy. First, we obtained 100 isolates of Lactobacillus spp. from dairy product samples. They screened for bacteriocin production and identified by PCR and gel electrophoresis for 16S ribosomal RNA gene. Bacteriocin was partially purified and tested against two different pathogens. Both L. plantarum and its bacteriocin were examined for cytotoxicity in vitro against esophageal cancer cell line (SK-GT4) and normal rat embryo fibroblast (REF) cells by MTT assay. Apoptosis was determined using an acridine orange /propidium iodide assay. The results showed that the isolate gives a high bacteriocin production about (2000AU/ml). In addition to antimicrobial activity, there was significant anticancer activity. L. plantarum had an IC50 of 51.01 CFU/ml and bacteriocin IC50 of 281.9 AU/ml against cancer cells. Both showed no cytotoxicity towards normal REF cells. Furthermore, there was a significant increase in apoptosis induction and in caspase-3 activity in cancer cells treated with L. plantarum and bacteriocin compared to untreated cells. In conclusion, L. plantarum and its bacteriocin show potent killing effect against esophageal cancer cells with no effect against normal cells indicating safety and selectivity with activation of apoptosis via caspase-3 induction suggesting potential clinical advantage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物乳杆菌及其衍生细菌素对食道癌细胞具有强大的抗肿瘤活性
食道癌是胃肠病学的一大难题,传统的化疗和放疗疗效较差,且副作用严重。因此,需要有效且更安全的替代疗法。益生菌,尤其是植物乳杆菌(L. plantarum)及其细菌素,可以预防或治疗食管肿瘤。我们的目的是研究植物乳杆菌及其细菌素在食道癌治疗中的应用。首先,我们从乳制品样本中分离出 100 株乳酸杆菌。通过聚合酶链式反应和凝胶电泳对 16S 核糖体 RNA 基因进行鉴定。对细菌素进行了部分纯化,并针对两种不同的病原体进行了测试。用 MTT 法检测了植物酵母菌及其细菌素在体外对食管癌细胞株(SK-GT4)和正常大鼠胚胎成纤维细胞(REF)的细胞毒性。采用吖啶橙/碘化丙啶法测定细胞凋亡。结果表明,该分离菌株能产生大量细菌素(2000AU/ml)。除了抗菌活性外,植物杆菌还具有显著的抗癌活性。植物酵母菌对癌细胞的 IC50 值为 51.01 CFU/ml,细菌素 IC50 值为 281.9 AU/ml。两者对正常 REF 细胞均无细胞毒性。此外,与未处理的细胞相比,用植物酵母菌和细菌素处理的癌细胞的凋亡诱导和 Caspase-3 活性明显增加。总之,植物乳杆菌及其细菌素对食道癌细胞有很强的杀灭作用,而对正常细胞没有影响,这表明植物乳杆菌及其细菌素具有安全性和选择性,可通过诱导 caspase-3 激活细胞凋亡,具有潜在的临床优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).
期刊最新文献
Cytoprotective Effect of Gallic Acid against Injuries Promoted by Therapeutic Ionizing Radiation in Preosteoblast Cells. Dysregulation of LncRNAs ANRIL, MALAT1, and LINC00305 in Coronary Slow Flow Patients: Implications for Inflammation and Endothelial Dysfunction. Evaluation of the Cytotoxicity of Secondary Bioactive Compounds Produced by Streptomyces in Soil against a Colon Cancer Cell Line. Evaluation of the Immune Checkpoints, TIM-3 and PD-1, as well as Anti-Inflammatory Cytokines IL-10, and TGF-β along with Diseases Activity in Chronic Spontaneous Urticaria. Evaluations of Biomarkers CDX1 and CDX2 in Gastric Cancer Prognosis: A Meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1