{"title":"Progressive Amyloid-β Accumulation in the Brain leads to Altered Protein Expressions in the Liver and Kidneys of APP knock-in Mice.","authors":"Shingo Ito, Yumi Iwata, Mitsumi Otsuka, Yui Kaneko, Seiryo Ogata, Ryotaro Yagi, Tatsuki Uemura, Takeshi Masuda, Takashi Saito, Takaomi Saido, Sumio Ohtsuki","doi":"10.1016/j.xphs.2024.10.051","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired hepatic and renal function influence Alzheimer's disease (AD) progression; however, whether AD progression affects these important organ functions remains unclear. Here, we investigated the impact of AD progression, characterized by brain amyloid-beta (Aβ) accumulation, on liver and kidney function of App<sup>NL-G-F/NL-G-F</sup> (APP-KI) mice using quantitative proteomics. SWATH-based quantitative proteomics revealed changes in mitochondrial, drug metabolism, and pharmacokinetic-related proteins in mouse liver and kidneys during the early (2-month-old) and intermediate (5-month-old) stages of Aβ accumulation. Notably, in 5-month-old APP-KI mouse liver, 25 phase I/II metabolizing enzymes (8 CYPs, 7 UGTs, 7 CESs, and 3 SLCs) and five transporters (2 ABCs and 3 SLCs) were significantly altered; specifically, Ugt1a9 and Slc33a1 protein abundances increased, whereas Ugt1a1 and Abcc3 protein abundances decreased. In the kidneys, 13 phase I/II metabolizing enzymes and 10 ABC-SLC transporters were altered, including Ugt1a6, Ugt1a7, Slc22a7, and Abcb1a. Additionally, plasma proteins, such as albumin and alpha-1-acid glycoprotein, which are critical for drug binding and distribution, were also altered. These results underscore the significant role of progressive brain Aβ accumulation in modifying hepatic and renal protein abundances, potentially influencing drug metabolism and disposition in AD. Our findings provide novel insights into the complex relationship between AD progression and organ dysfunction.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.10.051","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Impaired hepatic and renal function influence Alzheimer's disease (AD) progression; however, whether AD progression affects these important organ functions remains unclear. Here, we investigated the impact of AD progression, characterized by brain amyloid-beta (Aβ) accumulation, on liver and kidney function of AppNL-G-F/NL-G-F (APP-KI) mice using quantitative proteomics. SWATH-based quantitative proteomics revealed changes in mitochondrial, drug metabolism, and pharmacokinetic-related proteins in mouse liver and kidneys during the early (2-month-old) and intermediate (5-month-old) stages of Aβ accumulation. Notably, in 5-month-old APP-KI mouse liver, 25 phase I/II metabolizing enzymes (8 CYPs, 7 UGTs, 7 CESs, and 3 SLCs) and five transporters (2 ABCs and 3 SLCs) were significantly altered; specifically, Ugt1a9 and Slc33a1 protein abundances increased, whereas Ugt1a1 and Abcc3 protein abundances decreased. In the kidneys, 13 phase I/II metabolizing enzymes and 10 ABC-SLC transporters were altered, including Ugt1a6, Ugt1a7, Slc22a7, and Abcb1a. Additionally, plasma proteins, such as albumin and alpha-1-acid glycoprotein, which are critical for drug binding and distribution, were also altered. These results underscore the significant role of progressive brain Aβ accumulation in modifying hepatic and renal protein abundances, potentially influencing drug metabolism and disposition in AD. Our findings provide novel insights into the complex relationship between AD progression and organ dysfunction.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.