Kristen H. Jardine , Emily P. Minard , Cassidy E. Wideman , Haley Edwards , Karim H. Abouelnaga , William S. Messer , Boyer D. Winters
{"title":"M1 muscarinic receptor activation reverses age-related memory updating impairment in mice","authors":"Kristen H. Jardine , Emily P. Minard , Cassidy E. Wideman , Haley Edwards , Karim H. Abouelnaga , William S. Messer , Boyer D. Winters","doi":"10.1016/j.neurobiolaging.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>Previously consolidated memories can become temporarily labile upon reactivation. Reactivation-based memory updating is chiefly studied in young subjects, so we aimed to assess this process across the lifespan. To do this, we developed a behavioural paradigm wherein a reactivated object memory is updated with contextual information; 3-month-old and 6-month-old male C57BL/6 mice displayed object memory updating, but 12-month-old mice did not. We found that M1 muscarinic acetylcholine receptor signaling during reactivation was necessary for object memory updating in the young mice. Next, we targeted this mechanism in an attempt to facilitate object memory updating in aging mice. Remarkably, systemic pharmacological M1 receptor activation reversed the age-related deficit. Quantification of cholinergic system markers within perirhinal cortex revealed subtle cellular changes that may contribute to differential performance across age groups. These findings suggest that natural cholinergic change across the lifespan contributes to inflexible memory in the aging brain.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"145 ","pages":"Pages 65-75"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024001830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously consolidated memories can become temporarily labile upon reactivation. Reactivation-based memory updating is chiefly studied in young subjects, so we aimed to assess this process across the lifespan. To do this, we developed a behavioural paradigm wherein a reactivated object memory is updated with contextual information; 3-month-old and 6-month-old male C57BL/6 mice displayed object memory updating, but 12-month-old mice did not. We found that M1 muscarinic acetylcholine receptor signaling during reactivation was necessary for object memory updating in the young mice. Next, we targeted this mechanism in an attempt to facilitate object memory updating in aging mice. Remarkably, systemic pharmacological M1 receptor activation reversed the age-related deficit. Quantification of cholinergic system markers within perirhinal cortex revealed subtle cellular changes that may contribute to differential performance across age groups. These findings suggest that natural cholinergic change across the lifespan contributes to inflexible memory in the aging brain.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.