Advances in the roles and mechanisms of mesenchymal stem cell derived microRNAs on periodontal tissue regeneration.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2024-11-03 DOI:10.1186/s13287-024-03998-5
Jiaxiang Zhang, Liangrui Chen, Jialu Yu, Weidong Tian, Shujuan Guo
{"title":"Advances in the roles and mechanisms of mesenchymal stem cell derived microRNAs on periodontal tissue regeneration.","authors":"Jiaxiang Zhang, Liangrui Chen, Jialu Yu, Weidong Tian, Shujuan Guo","doi":"10.1186/s13287-024-03998-5","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is one of the most prevalent oral diseases leading to tooth loss in adults, and is characterized by the destruction of periodontal supporting structures. Traditional therapies for periodontitis cannot achieve ideal regeneration of the periodontal tissue. Mesenchymal stem cells (MSCs) represent a promising approach to periodontal tissue regeneration. Recently, the prominent role of MSCs in this context has been attributed to microRNAs (miRNAs), which participate in post-transcriptional regulation and are crucial for various physiological and pathological processes. Additionally, they function as indispensable elements in extracellular vesicles, which protect them from degradation. In periodontitis, MSCs-derived miRNAs play a pivotal role in cellular proliferation and differentiation, angiogenesis of periodontal tissues, regulating autophagy, providing anti-apoptotic effects, and mediating the inflammatory microenvironment. As a cell-free strategy, their small size and ability to target related sets of genes and regulate signaling networks predispose miRNAs to become ideal candidates for periodontal tissue regeneration. This review aims to introduce and summarize the potential functions and mechanisms of MSCs-derived miRNAs in periodontal tissue repair and regeneration.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"393"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-03998-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is one of the most prevalent oral diseases leading to tooth loss in adults, and is characterized by the destruction of periodontal supporting structures. Traditional therapies for periodontitis cannot achieve ideal regeneration of the periodontal tissue. Mesenchymal stem cells (MSCs) represent a promising approach to periodontal tissue regeneration. Recently, the prominent role of MSCs in this context has been attributed to microRNAs (miRNAs), which participate in post-transcriptional regulation and are crucial for various physiological and pathological processes. Additionally, they function as indispensable elements in extracellular vesicles, which protect them from degradation. In periodontitis, MSCs-derived miRNAs play a pivotal role in cellular proliferation and differentiation, angiogenesis of periodontal tissues, regulating autophagy, providing anti-apoptotic effects, and mediating the inflammatory microenvironment. As a cell-free strategy, their small size and ability to target related sets of genes and regulate signaling networks predispose miRNAs to become ideal candidates for periodontal tissue regeneration. This review aims to introduce and summarize the potential functions and mechanisms of MSCs-derived miRNAs in periodontal tissue repair and regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间充质干细胞衍生的 microRNA 在牙周组织再生中的作用和机制研究进展。
牙周炎是导致成年人牙齿脱落的最常见口腔疾病之一,其特点是牙周支持结构遭到破坏。牙周炎的传统疗法无法实现牙周组织的理想再生。间充质干细胞(MSCs)是一种很有前景的牙周组织再生方法。最近,间充质干细胞在这方面的突出作用归功于微RNA(miRNA),它们参与转录后调控,对各种生理和病理过程至关重要。此外,它们还是细胞外囊泡中不可或缺的元素,保护它们不被降解。在牙周炎中,间充质干细胞衍生的 miRNAs 在细胞增殖和分化、牙周组织血管生成、自噬调节、抗凋亡作用以及炎症微环境介导等方面发挥着关键作用。作为一种无细胞策略,miRNAs 体积小,能够靶向相关基因集和调节信号网络,因此成为牙周组织再生的理想候选物。本综述旨在介绍和总结间充质干细胞衍生的 miRNA 在牙周组织修复和再生中的潜在功能和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Correction: Multi-omics evaluation of clinical-grade human umbilical cord-derived mesenchymal stem cells in synergistic improvement of aging related disorders in a senescence-accelerated mouse model. Different storage and freezing protocols for extracellular vesicles: a systematic review. Inhibition of soluble epoxide hydrolase reverses bone loss in periodontitis by upregulating EMCN and inhibiting osteoclasts. Intravenous injection of BMSCs modulate tsRNA expression and ameliorate lung remodeling in COPD mice. Exosome crosstalk between cancer stem cells and tumor microenvironment: cancer progression and therapeutic strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1