{"title":"Jasmonate induces translation of the Arabidopsis transfer RNA-binding protein YUELAO1, which activates MYC2 in jasmonate signaling.","authors":"Jiahui Wang, Yuanyuan Li, Yanru Hu, Sirui Zhu","doi":"10.1093/plcell/koae294","DOIUrl":null,"url":null,"abstract":"<p><p>Jasmonate is ubiquitous in the plant kingdom and regulates multiple physiological processes. Although jasmonate signaling has been thoroughly investigated in Arabidopsis thaliana, most studies have focused on the transcriptional mechanisms underlying various jasmonate responses. It remains unclear whether (and how) translation-related pathways help improve transcription efficiency to modulate jasmonate signaling, which may enable plants to respond to stressful conditions effectively. Here, we demonstrate that jasmonate induces translation of the transfer RNA (tRNA)-binding protein YUELAO 1 (YL1) via a specific region in its 3' untranslated region (3' UTR). YL1 and its homolog YL2 redundantly stimulate jasmonate responses such as anthocyanin accumulation and root growth inhibition, with the YL1 3' UTR being critical for YL1-promoted jasmonate responses. Once translated, YL1 acts as an activator of the MYC2 transcription factor through direct interaction, and disrupting YL1 3' UTR impairs the YL1-mediated transcriptional activation of MYC2. YL1 enhances jasmonate responses mainly in a MYC2-dependent manner. Together, these findings reveal a translational mechanism involved in jasmonate signaling and advance our understanding of the transcriptional regulation of jasmonate signaling. The YL1 3' UTR acts as a crucial signal transducer that integrates translational and transcriptional regulation, allowing plants to respond to jasmonate in a timely fashion.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae294","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Jasmonate is ubiquitous in the plant kingdom and regulates multiple physiological processes. Although jasmonate signaling has been thoroughly investigated in Arabidopsis thaliana, most studies have focused on the transcriptional mechanisms underlying various jasmonate responses. It remains unclear whether (and how) translation-related pathways help improve transcription efficiency to modulate jasmonate signaling, which may enable plants to respond to stressful conditions effectively. Here, we demonstrate that jasmonate induces translation of the transfer RNA (tRNA)-binding protein YUELAO 1 (YL1) via a specific region in its 3' untranslated region (3' UTR). YL1 and its homolog YL2 redundantly stimulate jasmonate responses such as anthocyanin accumulation and root growth inhibition, with the YL1 3' UTR being critical for YL1-promoted jasmonate responses. Once translated, YL1 acts as an activator of the MYC2 transcription factor through direct interaction, and disrupting YL1 3' UTR impairs the YL1-mediated transcriptional activation of MYC2. YL1 enhances jasmonate responses mainly in a MYC2-dependent manner. Together, these findings reveal a translational mechanism involved in jasmonate signaling and advance our understanding of the transcriptional regulation of jasmonate signaling. The YL1 3' UTR acts as a crucial signal transducer that integrates translational and transcriptional regulation, allowing plants to respond to jasmonate in a timely fashion.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.