The Value of Machine Learning Models in Predicting Factors Associated with the Need for Permanent Shunting in Patients with Intracerebral Hemorrhage Requiring Emergency Cerebrospinal Fluid Diversion.
Ehsan Alimohammadi, Seyed Reza Bagheri, Farid Moradi, Alireza Abdi, Michael T Lawton
{"title":"The Value of Machine Learning Models in Predicting Factors Associated with the Need for Permanent Shunting in Patients with Intracerebral Hemorrhage Requiring Emergency Cerebrospinal Fluid Diversion.","authors":"Ehsan Alimohammadi, Seyed Reza Bagheri, Farid Moradi, Alireza Abdi, Michael T Lawton","doi":"10.1016/j.wneu.2024.10.078","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the efficacy of machine learning models in identifying factors associated with the need for permanent ventricular shunt placement in patients experiencing intracerebral hemorrhage (ICH) who require emergency cerebrospinal fluid (CSF) diversion.</p><p><strong>Methods: </strong>A retrospective review was performed on patients with ICH requiring urgent CSF diversion who were admitted to our facility between July 2009 and May 2023. A binary logistic regression analysis was carried out to determine independent predictors linked to the development of shunt-dependent hydrocephalus following ICH. Five different machine learning models-random forest (RF), support vector machine (SVM), k-nearest neighbor (k-NN), logistic regression (LR), and Adaptive Boosting (AdaBoost)-were utilized to predict the need for permanent shunting in those with spontaneous ICH necessitating emergency CSF diversion. Additionally, RF techniques were applied to identify the factors affecting the need for permanent ventricular shunt placement in these patients.</p><p><strong>Results: </strong>A total of 578 patients were included in the analysis. Shunt-dependent hydrocephalus occurred in 121 individuals (20.9%). In the multivariate analysis, the Graeb Score, the length of time the external ventricular drain was in place, and an elevated intracranial pressure greater than 30 mm Hg were significant predictors for the need for permanent CSF diversion (P < 0.05). All predictive models showed commendable performance, with RF achieving the highest accuracy (0.921), followed by SVM (0.906), k-NN (0.889), LR (0.881), and AdaBoost (0.823). RF also excelled over the other models in terms of sensitivity and specificity, with a sensitivity of 0.912 and specificity of 0.892. The area under the curve values for RF, SVM, k-NN, LR, and AdaBoost were recorded at 0.903, 0.820, 0.804, 0.801, and 0.798, respectively.</p><p><strong>Conclusions: </strong>This research demonstrates that machine learning models can effectively predict the need for permanent CSF diversion in patients with ICH who underwent external ventricular drain placement for urgent CSF diversion, offering important prognostic insights that could facilitate early intervention and lead to potential cost reductions.</p>","PeriodicalId":23906,"journal":{"name":"World neurosurgery","volume":" ","pages":"833-841"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.wneu.2024.10.078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To assess the efficacy of machine learning models in identifying factors associated with the need for permanent ventricular shunt placement in patients experiencing intracerebral hemorrhage (ICH) who require emergency cerebrospinal fluid (CSF) diversion.
Methods: A retrospective review was performed on patients with ICH requiring urgent CSF diversion who were admitted to our facility between July 2009 and May 2023. A binary logistic regression analysis was carried out to determine independent predictors linked to the development of shunt-dependent hydrocephalus following ICH. Five different machine learning models-random forest (RF), support vector machine (SVM), k-nearest neighbor (k-NN), logistic regression (LR), and Adaptive Boosting (AdaBoost)-were utilized to predict the need for permanent shunting in those with spontaneous ICH necessitating emergency CSF diversion. Additionally, RF techniques were applied to identify the factors affecting the need for permanent ventricular shunt placement in these patients.
Results: A total of 578 patients were included in the analysis. Shunt-dependent hydrocephalus occurred in 121 individuals (20.9%). In the multivariate analysis, the Graeb Score, the length of time the external ventricular drain was in place, and an elevated intracranial pressure greater than 30 mm Hg were significant predictors for the need for permanent CSF diversion (P < 0.05). All predictive models showed commendable performance, with RF achieving the highest accuracy (0.921), followed by SVM (0.906), k-NN (0.889), LR (0.881), and AdaBoost (0.823). RF also excelled over the other models in terms of sensitivity and specificity, with a sensitivity of 0.912 and specificity of 0.892. The area under the curve values for RF, SVM, k-NN, LR, and AdaBoost were recorded at 0.903, 0.820, 0.804, 0.801, and 0.798, respectively.
Conclusions: This research demonstrates that machine learning models can effectively predict the need for permanent CSF diversion in patients with ICH who underwent external ventricular drain placement for urgent CSF diversion, offering important prognostic insights that could facilitate early intervention and lead to potential cost reductions.
期刊介绍:
World Neurosurgery has an open access mirror journal World Neurosurgery: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The journal''s mission is to:
-To provide a first-class international forum and a 2-way conduit for dialogue that is relevant to neurosurgeons and providers who care for neurosurgery patients. The categories of the exchanged information include clinical and basic science, as well as global information that provide social, political, educational, economic, cultural or societal insights and knowledge that are of significance and relevance to worldwide neurosurgery patient care.
-To act as a primary intellectual catalyst for the stimulation of creativity, the creation of new knowledge, and the enhancement of quality neurosurgical care worldwide.
-To provide a forum for communication that enriches the lives of all neurosurgeons and their colleagues; and, in so doing, enriches the lives of their patients.
Topics to be addressed in World Neurosurgery include: EDUCATION, ECONOMICS, RESEARCH, POLITICS, HISTORY, CULTURE, CLINICAL SCIENCE, LABORATORY SCIENCE, TECHNOLOGY, OPERATIVE TECHNIQUES, CLINICAL IMAGES, VIDEOS