Yaojun Li , Sirui Liu , Hailin Zhai , Yuexia Wang , Yan Zhao , Xianfeng Ma
{"title":"The influence of different vacancies on Zr(0001)/SiC close-packed interface performance: A first-principles study","authors":"Yaojun Li , Sirui Liu , Hailin Zhai , Yuexia Wang , Yan Zhao , Xianfeng Ma","doi":"10.1016/j.jnucmat.2024.155461","DOIUrl":null,"url":null,"abstract":"<div><div>The first-principles were employed to investigate the structure, adhesion, and tensile properties of the Zr(0001)/SiC close-packed interface with different vacancies. From the perspective of vacancy formation energy, SiC coating is beneficial for enhancing the irradiation resistance of Zr cladding. When vacancies are present, except for the Zr2 and Zr3 vacancies, introducing other vacancies reduces the stability of Zr/SiC interfaces. The C-terminated interface is more stable than the Si-terminated interface. Through electronic structure analysis, vacancies at the interface primarily reduce the bonds between Zr and SiC, decreasing the interface stability. Vacancies on the side of SiC indirectly alter the strength or quantity of covalent (bonding or anti-bonding) and ionic bonds at the interface, thus intricately lowering the interface stability. In tensile tests, the cleavage of all interfaces with vacancies still occurs on the side of Zr. Vacancies on the SiC side partly lead to increased electrons between Zr1-Zr2 or Zr2-Zr3, strengthening the metallic bonds and enhancing the interface's ideal strength and ductility. The present study offers a novel perspective from the standpoint of bonding mechanisms, providing good insights into the effects of different vacancies on the performance of Zr/SiC interfaces.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155461"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005610","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The first-principles were employed to investigate the structure, adhesion, and tensile properties of the Zr(0001)/SiC close-packed interface with different vacancies. From the perspective of vacancy formation energy, SiC coating is beneficial for enhancing the irradiation resistance of Zr cladding. When vacancies are present, except for the Zr2 and Zr3 vacancies, introducing other vacancies reduces the stability of Zr/SiC interfaces. The C-terminated interface is more stable than the Si-terminated interface. Through electronic structure analysis, vacancies at the interface primarily reduce the bonds between Zr and SiC, decreasing the interface stability. Vacancies on the side of SiC indirectly alter the strength or quantity of covalent (bonding or anti-bonding) and ionic bonds at the interface, thus intricately lowering the interface stability. In tensile tests, the cleavage of all interfaces with vacancies still occurs on the side of Zr. Vacancies on the SiC side partly lead to increased electrons between Zr1-Zr2 or Zr2-Zr3, strengthening the metallic bonds and enhancing the interface's ideal strength and ductility. The present study offers a novel perspective from the standpoint of bonding mechanisms, providing good insights into the effects of different vacancies on the performance of Zr/SiC interfaces.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.