Gyanender Singh , Jordan A. Evans , Wen Jiang , Jason Hales , Stephen Novascone
{"title":"Impact of anisotropy on TRISO fuel performance","authors":"Gyanender Singh , Jordan A. Evans , Wen Jiang , Jason Hales , Stephen Novascone","doi":"10.1016/j.nucengdes.2024.113637","DOIUrl":null,"url":null,"abstract":"<div><div>Manufacturing of tristructural isotropic (TRISO) particles involves the deposition of pyrolytic carbon (PyC) and silicon carbide (SiC) layers using the fluidized bed chemical vapor deposition (CVD) process. The CVD process is known to generate polycrystalline layers with crystallographic textures, which imparts anisotropic thermophysical properties to the layers. Past studies have shown the risk for particle failure increases with an increase in anisotropy. The limit beyond which the anisotropy of PyC layers becomes unacceptable due to failure risk has been identified as a high-priority knowledge gap. This work presents a first systematic study on the effects of anisotropic thermal and mechanical properties on TRISO fuel performance. This computational study, performed using the fuel performance code BISON, investigates how the anisotropy in elasticity and thermal properties affect the stresses, temperature, and failure of a TRISO particle. The influence of other factors, such as operating temperature and particle geometry on the anisotropy effects, also has been analyzed. The studies utilize the recently published anisotropic elasticity and thermal behavior models for TRISO PyC and SiC layers implemented using tensors with full anisotropic capability. The spherical TRISO particles with anisotropic properties were found to have greater maximum tensile stress and significantly higher failure probability than the spherical particles with isotropic properties. The fuel performance predicted using these recently developed models was found to be comparable with the performance obtained using the historical models.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007374","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Manufacturing of tristructural isotropic (TRISO) particles involves the deposition of pyrolytic carbon (PyC) and silicon carbide (SiC) layers using the fluidized bed chemical vapor deposition (CVD) process. The CVD process is known to generate polycrystalline layers with crystallographic textures, which imparts anisotropic thermophysical properties to the layers. Past studies have shown the risk for particle failure increases with an increase in anisotropy. The limit beyond which the anisotropy of PyC layers becomes unacceptable due to failure risk has been identified as a high-priority knowledge gap. This work presents a first systematic study on the effects of anisotropic thermal and mechanical properties on TRISO fuel performance. This computational study, performed using the fuel performance code BISON, investigates how the anisotropy in elasticity and thermal properties affect the stresses, temperature, and failure of a TRISO particle. The influence of other factors, such as operating temperature and particle geometry on the anisotropy effects, also has been analyzed. The studies utilize the recently published anisotropic elasticity and thermal behavior models for TRISO PyC and SiC layers implemented using tensors with full anisotropic capability. The spherical TRISO particles with anisotropic properties were found to have greater maximum tensile stress and significantly higher failure probability than the spherical particles with isotropic properties. The fuel performance predicted using these recently developed models was found to be comparable with the performance obtained using the historical models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.