Ze Sheng , Manon Bonvalet Rolland , Peter Hedström
{"title":"A new model for precipitation kinetics considering diffusion within the precipitates","authors":"Ze Sheng , Manon Bonvalet Rolland , Peter Hedström","doi":"10.1016/j.calphad.2024.102764","DOIUrl":null,"url":null,"abstract":"<div><div>Quantitative modelling of precipitation kinetics can play an important role in a computational materials design framework. For many material systems, e.g., the Fe-Cu system, the precipitates (rich in Cu at equilibrium) nucleate at a composition far away from the equilibrium. This in turn affects the precipitation kinetics, and the capability to model the compositional evolution of the Cu precipitates is therefore important. In the present work we propose a new approach implemented in a Langer-Schwartz-Kampmann-Wagner precipitation modelling framework where the concentration profile inside the precipitates is defined with an explicit function and the diffusive fluxes in both precipitates and matrix are solved concurrently to compute the growth rate of the precipitates. The new model is evaluated with respect to results from atom probe tomography for Cu precipitation in a 15–5 PH stainless steel. A parameter study of the effect of diffusion coefficients and interfacial energies is conducted, and it is concluded that the new model is capable of describing the experimentally determined evolution of the Cu precipitate volume fraction, mean radius, number density and composition.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102764"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624001068","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative modelling of precipitation kinetics can play an important role in a computational materials design framework. For many material systems, e.g., the Fe-Cu system, the precipitates (rich in Cu at equilibrium) nucleate at a composition far away from the equilibrium. This in turn affects the precipitation kinetics, and the capability to model the compositional evolution of the Cu precipitates is therefore important. In the present work we propose a new approach implemented in a Langer-Schwartz-Kampmann-Wagner precipitation modelling framework where the concentration profile inside the precipitates is defined with an explicit function and the diffusive fluxes in both precipitates and matrix are solved concurrently to compute the growth rate of the precipitates. The new model is evaluated with respect to results from atom probe tomography for Cu precipitation in a 15–5 PH stainless steel. A parameter study of the effect of diffusion coefficients and interfacial energies is conducted, and it is concluded that the new model is capable of describing the experimentally determined evolution of the Cu precipitate volume fraction, mean radius, number density and composition.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.