Re-direction in queueing networks with two customer types: The inter-departure analysis

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Operations Research Pub Date : 2024-10-29 DOI:10.1016/j.cor.2024.106867
{"title":"Re-direction in queueing networks with two customer types: The inter-departure analysis","authors":"","doi":"10.1016/j.cor.2024.106867","DOIUrl":null,"url":null,"abstract":"<div><div>Re-direction occurs when a customer arriving at a station in a queuing network has to be re-directed to a downstream station to complete service. Re-direction is extremely common in practice and occurs for a variety of reasons, ranging from incorrect initial station assignment to cases where the initial station only provides part of the service. <em>Gatekeeper</em> stations (e.g., information desks) is a special case of re-direction. We consider re-direction in a queueing network consisting of single-server stations serving two customer types with different service time requirements. The behavior of such queueing networks is quite complex: even when all external arrivals and all services are Markovian, the customers’ inter-departure distribution, and hence their arrival process to downstream stations, is non-Markovian. Thus, product-form representation does not hold for such networks. Our analysis focuses on the key building block: the inter-departure process from a station serving two distinct customer types and routing them to two different downstream service paths. Using a novel approach, we obtain a very accurate phase-type representation of the inter-departure process under equilibrium. We show that the resulting methodology has significant advantages over both simulation modeling (our method is much faster) and the available approximation techniques (our method is more accurate). Finally, we demonstrate an interesting phenomenon: even when the station merely re-directs one of the customer types (providing no service and seemingly useless waits), it can serve as a “regulator”, reducing the variability of the downstream arrival process. We show that, under some conditions, this can improve the overall system performance.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003393","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Re-direction occurs when a customer arriving at a station in a queuing network has to be re-directed to a downstream station to complete service. Re-direction is extremely common in practice and occurs for a variety of reasons, ranging from incorrect initial station assignment to cases where the initial station only provides part of the service. Gatekeeper stations (e.g., information desks) is a special case of re-direction. We consider re-direction in a queueing network consisting of single-server stations serving two customer types with different service time requirements. The behavior of such queueing networks is quite complex: even when all external arrivals and all services are Markovian, the customers’ inter-departure distribution, and hence their arrival process to downstream stations, is non-Markovian. Thus, product-form representation does not hold for such networks. Our analysis focuses on the key building block: the inter-departure process from a station serving two distinct customer types and routing them to two different downstream service paths. Using a novel approach, we obtain a very accurate phase-type representation of the inter-departure process under equilibrium. We show that the resulting methodology has significant advantages over both simulation modeling (our method is much faster) and the available approximation techniques (our method is more accurate). Finally, we demonstrate an interesting phenomenon: even when the station merely re-directs one of the customer types (providing no service and seemingly useless waits), it can serve as a “regulator”, reducing the variability of the downstream arrival process. We show that, under some conditions, this can improve the overall system performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有两种客户类型的排队网络中的重新定向:出发间分析
当客户到达排队网络中的一个站点时,必须重新定向到下游站点才能完成服务,这就是重定向。重定向在实践中极为常见,发生的原因多种多样,从错误的初始站点分配到初始站点只提供部分服务的情况都有。守门站(如问讯台)是重定向的一种特殊情况。我们考虑的是由单服务器站点组成的队列网络中的重定向问题,这些站点为两种客户类型提供服务,而这两种客户类型对服务时间的要求各不相同。这种排队网络的行为相当复杂:即使所有外部到达和所有服务都是马尔可夫式的,客户的出发间分布以及他们到达下游站点的过程也是非马尔可夫式的。因此,产品形式表示法并不适用于此类网络。我们的分析重点是关键构件:从一个车站出发,为两种不同类型的客户提供服务,并将他们分流到两条不同的下游服务路径的区间过程。我们采用一种新颖的方法,在平衡状态下获得了非常精确的相型表示。我们证明,与模拟建模(我们的方法更快)和现有的近似技术(我们的方法更精确)相比,我们的方法具有显著优势。最后,我们展示了一个有趣的现象:即使车站只是重新引导其中一种客户类型(不提供服务和看似无用的等待),它也可以充当 "调节器",降低下游到达过程的可变性。我们的研究表明,在某些条件下,这可以提高整个系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
期刊最新文献
Corporate risk stratification through an interpretable autoencoder-based model Re-direction in queueing networks with two customer types: The inter-departure analysis Multi objective optimization of human–robot collaboration: A case study in aerospace assembly line A deep reinforcement learning hyperheuristic for the covering tour problem with varying coverage Arc-flow formulation and branch-and-price-and-cut algorithm for the bin-packing problem with fragile objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1