{"title":"Homogenized models of mechanical metamaterials","authors":"J. Ulloa , M.P. Ariza , J.E. Andrade , M. Ortiz","doi":"10.1016/j.cma.2024.117454","DOIUrl":null,"url":null,"abstract":"<div><div>Direct numerical simulations of mechanical metamaterials are prohibitively expensive due to the separation of scales between the lattice and the macrostructural size. Hence, multiscale continuum analysis plays a pivotal role in the computational modeling of metastructures at macroscopic scales. In the present work, we assess the continuum limit of mechanical metamaterials via homogenized models derived rigorously from variational methods. It is shown through multiple examples that micropolar-type effective energies, derived naturally from analysis, properly capture the kinematics of discrete lattices in two and three dimensions. Moreover, the convergence of the discrete energy to the continuum limit is shown numerically. We provide open-source computational implementations for all examples, including both discrete and homogenized models.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117454"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007096","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct numerical simulations of mechanical metamaterials are prohibitively expensive due to the separation of scales between the lattice and the macrostructural size. Hence, multiscale continuum analysis plays a pivotal role in the computational modeling of metastructures at macroscopic scales. In the present work, we assess the continuum limit of mechanical metamaterials via homogenized models derived rigorously from variational methods. It is shown through multiple examples that micropolar-type effective energies, derived naturally from analysis, properly capture the kinematics of discrete lattices in two and three dimensions. Moreover, the convergence of the discrete energy to the continuum limit is shown numerically. We provide open-source computational implementations for all examples, including both discrete and homogenized models.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.