Synthesis and performance of cross-linked poly(aryl ether nitrile) anion exchange membranes with dense cations and flexible side-chain structures for water electrolysis
Jianxiong Hu , Kexin Chen , Aman Liu , Xiaojing Zhang , Jian Li , Chenyi Wang , Xiaoyan Zhao
{"title":"Synthesis and performance of cross-linked poly(aryl ether nitrile) anion exchange membranes with dense cations and flexible side-chain structures for water electrolysis","authors":"Jianxiong Hu , Kexin Chen , Aman Liu , Xiaojing Zhang , Jian Li , Chenyi Wang , Xiaoyan Zhao","doi":"10.1016/j.jelechem.2024.118750","DOIUrl":null,"url":null,"abstract":"<div><div>Anion exchange membranes (AEMs) are the core components in anion exchange membrane water electrolysis (AEMWE), which play crucial role and affect the performance of AEMWE. In this work, a series of cross-linked poly(aryl ether nitrile) anion exchange membranes (CPAEN-dDQA-x) with dense cations and flexible side-chain structures are synthesized. By introducing multiple modification elements into the polymer structure simultaneously, the ion conductivity, dimensional stability, and alkali resistance stability of the prepared AEMs are effectively improved and balanced. The representative CPAEN-dDQA-0.25 showed water absorption of only 27.6 %, swelling rate of 11.2 %, and conductivity of 115.37 mS/cm at 80°C. The IEC and conductivity retention value of CPAEN-dDQA-0.25 after in 2 M NaOH solution at 80°C for 480 h were up to 86.2 % and 82 %, respectively. Meanwhile, the current density of the water electrolysis cell based on CPAEN-dDQA-0.25 is up to 477.0 mA/cm<sup>2</sup> in 1 M KOH and 2.2 V, and its voltage don’t has significant change after 480 h of operation at a constant current density of 500 mA/cm<sup>2</sup>.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"974 ","pages":"Article 118750"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007288","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anion exchange membranes (AEMs) are the core components in anion exchange membrane water electrolysis (AEMWE), which play crucial role and affect the performance of AEMWE. In this work, a series of cross-linked poly(aryl ether nitrile) anion exchange membranes (CPAEN-dDQA-x) with dense cations and flexible side-chain structures are synthesized. By introducing multiple modification elements into the polymer structure simultaneously, the ion conductivity, dimensional stability, and alkali resistance stability of the prepared AEMs are effectively improved and balanced. The representative CPAEN-dDQA-0.25 showed water absorption of only 27.6 %, swelling rate of 11.2 %, and conductivity of 115.37 mS/cm at 80°C. The IEC and conductivity retention value of CPAEN-dDQA-0.25 after in 2 M NaOH solution at 80°C for 480 h were up to 86.2 % and 82 %, respectively. Meanwhile, the current density of the water electrolysis cell based on CPAEN-dDQA-0.25 is up to 477.0 mA/cm2 in 1 M KOH and 2.2 V, and its voltage don’t has significant change after 480 h of operation at a constant current density of 500 mA/cm2.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.