Yijiang Li , Santanu S. Dey , Nikolaos V. Sahinidis , Naresh Susarla , Miguel A. Zamarripa , Markus G. Drouven
{"title":"Optimizing the design and operation of water networks: Two decomposition approaches","authors":"Yijiang Li , Santanu S. Dey , Nikolaos V. Sahinidis , Naresh Susarla , Miguel A. Zamarripa , Markus G. Drouven","doi":"10.1016/j.compchemeng.2024.108897","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the design and operation of water networks simultaneously. Water network problems can be divided into two categories: the design problem and the operation problem. The design problem involves determining the appropriate pipe sizing and placements of pump stations, while the operation problem involves scheduling pump stations over multiple time periods to account for changes in supply and demand. Our focus is on networks that involve water co-produced with oil and gas. While solving the optimization formulation for such networks, we found that obtaining a primal (feasible) solution is more challenging than obtaining dual bounds using off-the-shelf mixed-integer nonlinear programming solvers. Therefore, we propose two methods to obtain good primal solutions. One method involves a decomposition framework that utilizes a convex reformulation, while the other is based on time decomposition. To test our proposed methods, we conduct computational experiments on a network derived from the PARETO case study.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108897"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003156","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the design and operation of water networks simultaneously. Water network problems can be divided into two categories: the design problem and the operation problem. The design problem involves determining the appropriate pipe sizing and placements of pump stations, while the operation problem involves scheduling pump stations over multiple time periods to account for changes in supply and demand. Our focus is on networks that involve water co-produced with oil and gas. While solving the optimization formulation for such networks, we found that obtaining a primal (feasible) solution is more challenging than obtaining dual bounds using off-the-shelf mixed-integer nonlinear programming solvers. Therefore, we propose two methods to obtain good primal solutions. One method involves a decomposition framework that utilizes a convex reformulation, while the other is based on time decomposition. To test our proposed methods, we conduct computational experiments on a network derived from the PARETO case study.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.