Observer-based adaptive neural network event-triggered quantized control for active suspensions with actuator saturation

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-28 DOI:10.1016/j.neucom.2024.128770
Tiechao Wang, Hongyang Zhang, Shuai Sui
{"title":"Observer-based adaptive neural network event-triggered quantized control for active suspensions with actuator saturation","authors":"Tiechao Wang,&nbsp;Hongyang Zhang,&nbsp;Shuai Sui","doi":"10.1016/j.neucom.2024.128770","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an adaptive neural network event-triggered and quantized output feedback control scheme for quarter vehicle active suspensions with actuator saturation. The scheme uses neural networks to approximate the unknown parts of the active suspension. When the system states of the suspension are not entirely available, a state observer is designed to estimate the unknown states. The measurable system states, partially estimated observer states, neural network weights, and a filtered virtual control are sequentially event-triggered, quantified, and transmitted to the controller via in-vehicle networks. The problem of non-differentiable virtual control is solved using dynamic surface control technology in the backstepping quantized control design. Integrating a Gaussian error function and a first-order auxiliary subsystem compensates for the nonlinearity caused by asymmetric saturation. Theoretical analysis proves that all error signals of the closed-loop active suspension system are semi-globally uniformly ultimately bounded, and the Zeno phenomenon can be ruled out. Simulation results validate the effectiveness of the proposed control method.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128770"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015418","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an adaptive neural network event-triggered and quantized output feedback control scheme for quarter vehicle active suspensions with actuator saturation. The scheme uses neural networks to approximate the unknown parts of the active suspension. When the system states of the suspension are not entirely available, a state observer is designed to estimate the unknown states. The measurable system states, partially estimated observer states, neural network weights, and a filtered virtual control are sequentially event-triggered, quantified, and transmitted to the controller via in-vehicle networks. The problem of non-differentiable virtual control is solved using dynamic surface control technology in the backstepping quantized control design. Integrating a Gaussian error function and a first-order auxiliary subsystem compensates for the nonlinearity caused by asymmetric saturation. Theoretical analysis proves that all error signals of the closed-loop active suspension system are semi-globally uniformly ultimately bounded, and the Zeno phenomenon can be ruled out. Simulation results validate the effectiveness of the proposed control method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于观测器的自适应神经网络事件触发量化控制,用于具有致动器饱和度的主动悬挂系统
本文针对致动器饱和的四分之一车辆主动悬架提出了一种自适应神经网络事件触发和量化输出反馈控制方案。该方案利用神经网络对主动悬架的未知部分进行近似。当悬架的系统状态不完全可用时,设计一个状态观测器来估计未知状态。可测量的系统状态、部分估计的观测器状态、神经网络权重和滤波虚拟控制依次被事件触发、量化,并通过车载网络传输到控制器。在反步进量化控制设计中,利用动态表面控制技术解决了无差别虚拟控制问题。整合高斯误差函数和一阶辅助子系统可补偿非对称饱和引起的非线性问题。理论分析证明,闭环主动悬架系统的所有误差信号都是半全局均匀终界的,可以排除芝诺现象。仿真结果验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Virtual sample generation for small sample learning: A survey, recent developments and future prospects Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network FPGA-based component-wise LSTM training accelerator for neural granger causality analysis Multi-sensor information fusion in Internet of Vehicles based on deep learning: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1