Mechanically induced surface defect engineering in expanded graphite to boost the low-voltage intercalation kinetics for advanced potassium-ion batteries

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-11-01 DOI:10.1016/j.carbon.2024.119791
Sijin Dong , Xin Gu , Yapeng Li , Longfei Du , Xinyu Lv , Fei Pang , Akang Cui , Kaiyuan Zhang , Mengdi Zhang , Qingshan Zhao , Bin Wang , Han Hu , Mingbo Wu
{"title":"Mechanically induced surface defect engineering in expanded graphite to boost the low-voltage intercalation kinetics for advanced potassium-ion batteries","authors":"Sijin Dong ,&nbsp;Xin Gu ,&nbsp;Yapeng Li ,&nbsp;Longfei Du ,&nbsp;Xinyu Lv ,&nbsp;Fei Pang ,&nbsp;Akang Cui ,&nbsp;Kaiyuan Zhang ,&nbsp;Mengdi Zhang ,&nbsp;Qingshan Zhao ,&nbsp;Bin Wang ,&nbsp;Han Hu ,&nbsp;Mingbo Wu","doi":"10.1016/j.carbon.2024.119791","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing carbon materials' low-potential K<sup>+</sup> intercalation capacity is an essential topic in potassium-ion batteries (PIBs). Nevertheless, conventional methods effectively improve performance by increasing the surface area and active sites, but always at the expense of initial coulombic efficiency (ICE). Herein, an efficient and convenient strategy is proposed to construct self-doped defective carbon nanosheets (SDCS) using the mechanical ball-milling technique. This in situ defect engineering increases K<sup>+</sup> intercalation sites and shortens the ionic pathway, enhancing the ionic intercalation kinetics, specific capacity, and ICE. As expected, the SDCS-24 electrode delivers an ultra-high low-potential capacity of 314.3 mAh g<sup>−1</sup> below 0.5 V, high ICE of 76.1 %, and long-term cycle stability (300.1 mAh g<sup>−1</sup> after 1800 cycles at 1 C). The K<sup>+</sup> storage mechanism is determined by ex situ XRD and in situ Raman. The full-cell with 3,4,9,10-Perylenetetracarboxylic dianhydride cathode and SDCS-24 anode further confirms its promising application. This work presents a strategy for designing self-doped defective carbons in situ and provides insights into the potassium storage mechanism at low potential.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"232 ","pages":"Article 119791"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010108","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing carbon materials' low-potential K+ intercalation capacity is an essential topic in potassium-ion batteries (PIBs). Nevertheless, conventional methods effectively improve performance by increasing the surface area and active sites, but always at the expense of initial coulombic efficiency (ICE). Herein, an efficient and convenient strategy is proposed to construct self-doped defective carbon nanosheets (SDCS) using the mechanical ball-milling technique. This in situ defect engineering increases K+ intercalation sites and shortens the ionic pathway, enhancing the ionic intercalation kinetics, specific capacity, and ICE. As expected, the SDCS-24 electrode delivers an ultra-high low-potential capacity of 314.3 mAh g−1 below 0.5 V, high ICE of 76.1 %, and long-term cycle stability (300.1 mAh g−1 after 1800 cycles at 1 C). The K+ storage mechanism is determined by ex situ XRD and in situ Raman. The full-cell with 3,4,9,10-Perylenetetracarboxylic dianhydride cathode and SDCS-24 anode further confirms its promising application. This work presents a strategy for designing self-doped defective carbons in situ and provides insights into the potassium storage mechanism at low potential.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膨胀石墨中的机械诱导表面缺陷工程,促进先进钾离子电池的低压插层动力学
提高碳材料的低电位 K+ 插层能力是钾离子电池(PIB)的一个重要课题。然而,传统方法通过增加表面积和活性位点来有效提高性能,但总是以牺牲初始库仑效率(ICE)为代价。本文提出了一种高效便捷的策略,利用机械球磨技术构建自掺杂缺陷碳纳米片(SDCS)。这种原位缺陷工程增加了 K+ 插层位点,缩短了离子通道,从而提高了离子插层动力学、比容量和 ICE。正如预期的那样,SDCS-24 电极在 0.5 V 以下具有 314.3 mAh g-1 的超高低电位容量、76.1 % 的高 ICE 和长期循环稳定性(在 1 C 下循环 1800 次后达到 300.1 mAh g-1)。K+ 储存机制是通过原位 XRD 和原位拉曼来确定的。使用 3,4,9,10-Perylenetetracarboxylic dianhydride 阴极和 SDCS-24 阳极的全电池进一步证实了其应用前景。这项工作提出了一种原位设计自掺杂缺陷碳的策略,并为低电位下的钾存储机制提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Novel ultralight carbon foam reinforced carbon aerogel composites with low volume shrinkage and excellent thermal insulation performance Synergistic NH2-MIL-88B/Ta4C3TX/graphene aerogels for sustainable wastewater treatment and thermal energy storage MXene-CNTs/Co dielectric-electromagnetic synergistic composites with multi-heterogeneous interfaces for microwave absorption Hierarchical core-shell transitional metal chalcogenides Co9S8/ CoSe2@C nanocube embedded into porous carbon for tunable and efficient microwave absorption Coating carbon cloth with Cu3Se2 by electrodeposition for pressure sensing and enhanced EMI shielding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1