Perceptual metric for face image quality with pixel-level interpretability

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-28 DOI:10.1016/j.neucom.2024.128780
Byungho Jo , In Kyu Park , Sungeun Hong
{"title":"Perceptual metric for face image quality with pixel-level interpretability","authors":"Byungho Jo ,&nbsp;In Kyu Park ,&nbsp;Sungeun Hong","doi":"10.1016/j.neucom.2024.128780","DOIUrl":null,"url":null,"abstract":"<div><div>This paper tackles the shortcomings of image evaluation metrics in evaluating facial image quality. Conventional metrics do neither accurately reflect the unique attributes of facial images nor correspond with human visual perception. To address these issues, we introduce a novel metric designed specifically for faces, utilizing a learning-based adversarial framework. This framework comprises a generator for simulating face restoration and a discriminator for quality evaluation. Drawing inspiration from facial neuroscience studies, our metric emphasizes the importance of primary facial features, acknowledging that minor changes in the eyes, nose, and mouth can significantly impact perception. Another key limitation of existing image evaluation metrics is their focus on numerical values at the image level, without providing insight into how different areas of the image contribute to the overall assessment. Our proposed metric offers interpretability regarding how each region of the image is evaluated. Comprehensive experimental results confirm that our face-specific metric surpasses traditional general image quality assessment metrics for facial images, including both full-reference and no-reference methods. The code and models are available at <span><span>https://github.com/AIM-SKKU/IFQA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015510","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper tackles the shortcomings of image evaluation metrics in evaluating facial image quality. Conventional metrics do neither accurately reflect the unique attributes of facial images nor correspond with human visual perception. To address these issues, we introduce a novel metric designed specifically for faces, utilizing a learning-based adversarial framework. This framework comprises a generator for simulating face restoration and a discriminator for quality evaluation. Drawing inspiration from facial neuroscience studies, our metric emphasizes the importance of primary facial features, acknowledging that minor changes in the eyes, nose, and mouth can significantly impact perception. Another key limitation of existing image evaluation metrics is their focus on numerical values at the image level, without providing insight into how different areas of the image contribute to the overall assessment. Our proposed metric offers interpretability regarding how each region of the image is evaluated. Comprehensive experimental results confirm that our face-specific metric surpasses traditional general image quality assessment metrics for facial images, including both full-reference and no-reference methods. The code and models are available at https://github.com/AIM-SKKU/IFQA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有像素级可解释性的人脸图像质量感知指标
本文探讨了图像评价指标在评价面部图像质量方面的不足。传统指标既不能准确反映面部图像的独特属性,也不符合人类的视觉感知。为了解决这些问题,我们利用基于学习的对抗框架,引入了一种专为人脸设计的新型指标。该框架包括一个用于模拟人脸还原的生成器和一个用于质量评估的判别器。从面部神经科学研究中汲取灵感,我们的指标强调主要面部特征的重要性,承认眼睛、鼻子和嘴巴的微小变化都会对感知产生重大影响。现有图像评价指标的另一个主要局限是只关注图像层面的数值,而无法深入了解图像的不同区域对整体评估的贡献。我们提出的指标可以解释如何对图像的每个区域进行评估。全面的实验结果证实,我们针对面部的指标超越了传统的面部图像质量评估指标,包括全参考和无参考方法。代码和模型可在 https://github.com/AIM-SKKU/IFQA 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect Editorial Board Multi-contrast image clustering via multi-resolution augmentation and momentum-output queues Augmented ELBO regularization for enhanced clustering in variational autoencoders Learning from different perspectives for regret reduction in reinforcement learning: A free energy approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1