CoFiNet: Unveiling camouflaged objects with multi-scale finesse

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-28 DOI:10.1016/j.neucom.2024.128763
Cunhan Guo , Heyan Huang
{"title":"CoFiNet: Unveiling camouflaged objects with multi-scale finesse","authors":"Cunhan Guo ,&nbsp;Heyan Huang","doi":"10.1016/j.neucom.2024.128763","DOIUrl":null,"url":null,"abstract":"<div><div>Camouflaged Object Detection (COD) is a critical aspect of computer vision aimed at identifying concealed objects, with applications spanning military, industrial, medical and monitoring domains. To address the problem of poor detail segmentation effect, we introduce a novel method for camouflaged object detection, named CoFiNet. Our approach primarily focuses on multi-scale feature fusion and extraction, with special attention to the model’s segmentation effectiveness for detailed features, enhancing its ability to effectively detect camouflaged objects. CoFiNet adopts a coarse-to-fine strategy. A multi-scale feature integration module is laveraged to enhance the model’s capability of fusing context feature. A multi-activation selective kernel module is leveraged to grant the model the ability to autonomously alter its receptive field, enabling it to selectively choose an appropriate receptive field for camouflaged objects of different sizes. During mask generation, we employ the dual-mask strategy for image segmentation, separating the reconstruction of coarse and fine masks, which significantly enhances the model’s learning capacity for details. Comprehensive experiments were conducted on four different datasets, demonstrating that CoFiNet achieves state-of-the-art performance across all datasets. The experiment results of CoFiNet underscore its effectiveness in camouflaged object detection and highlight its potential in various practical application scenarios.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015340","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Camouflaged Object Detection (COD) is a critical aspect of computer vision aimed at identifying concealed objects, with applications spanning military, industrial, medical and monitoring domains. To address the problem of poor detail segmentation effect, we introduce a novel method for camouflaged object detection, named CoFiNet. Our approach primarily focuses on multi-scale feature fusion and extraction, with special attention to the model’s segmentation effectiveness for detailed features, enhancing its ability to effectively detect camouflaged objects. CoFiNet adopts a coarse-to-fine strategy. A multi-scale feature integration module is laveraged to enhance the model’s capability of fusing context feature. A multi-activation selective kernel module is leveraged to grant the model the ability to autonomously alter its receptive field, enabling it to selectively choose an appropriate receptive field for camouflaged objects of different sizes. During mask generation, we employ the dual-mask strategy for image segmentation, separating the reconstruction of coarse and fine masks, which significantly enhances the model’s learning capacity for details. Comprehensive experiments were conducted on four different datasets, demonstrating that CoFiNet achieves state-of-the-art performance across all datasets. The experiment results of CoFiNet underscore its effectiveness in camouflaged object detection and highlight its potential in various practical application scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoFiNet:多尺度巧妙揭开伪装物体的神秘面纱
伪装物体检测(COD)是计算机视觉的一个重要方面,其目的是识别隐藏的物体,应用范围涵盖军事、工业、医疗和监控领域。为了解决细节分割效果不佳的问题,我们引入了一种新的伪装物体检测方法,命名为 CoFiNet。我们的方法主要侧重于多尺度特征融合和提取,并特别关注模型对细节特征的分割效果,从而增强其有效检测伪装物体的能力。CoFiNet 采用了从粗到细的策略。平均化的多尺度特征整合模块增强了模型融合上下文特征的能力。利用多激活选择内核模块,赋予模型自主改变感受野的能力,使其能够为不同大小的伪装物体选择合适的感受野。在生成遮罩时,我们采用双遮罩策略进行图像分割,将粗遮罩和细遮罩的重建分开,这大大增强了模型对细节的学习能力。我们在四个不同的数据集上进行了综合实验,结果表明 CoFiNet 在所有数据集上都取得了最先进的性能。CoFiNet 的实验结果证明了它在伪装物体检测中的有效性,并突出了它在各种实际应用场景中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect Editorial Board Multi-contrast image clustering via multi-resolution augmentation and momentum-output queues Augmented ELBO regularization for enhanced clustering in variational autoencoders Learning from different perspectives for regret reduction in reinforcement learning: A free energy approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1