{"title":"On the maximum field of linearity of linear sets","authors":"Bence Csajbók, Giuseppe Marino, Valentina Pepe","doi":"10.1112/blms.13133","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> denote an <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n <annotation>$\\mathbb {F}_{q^n}$</annotation>\n </semantics></math>-vector space. For an <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math>-subspace <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>, assume that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>q</mi>\n </msub>\n <mfenced>\n <msub>\n <mrow>\n <mo>⟨</mo>\n <mi>v</mi>\n <mo>⟩</mo>\n </mrow>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n </msub>\n <mo>∩</mo>\n <mi>U</mi>\n </mfenced>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\dim _q \\left(\\langle {\\bf v}\\rangle _{\\mathbb {F}_{q^n}} \\cap U\\right) \\geqslant 2$</annotation>\n </semantics></math> for each nonzero vector <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>∈</mo>\n <mi>U</mi>\n </mrow>\n <annotation>${\\bf v}\\in U$</annotation>\n </semantics></math>. If <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$n\\leqslant q$</annotation>\n </semantics></math>, then we prove the existence of an integer <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo><</mo>\n <mi>d</mi>\n <mo>∣</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$1&lt;d \\mid n$</annotation>\n </semantics></math> such that the set of one-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n <annotation>$\\mathbb {F}_{q^n}$</annotation>\n </semantics></math>-subspaces generated by nonzero vectors of <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> is the same as the set of one-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n <annotation>$\\mathbb {F}_{q^n}$</annotation>\n </semantics></math>-subspaces generated by nonzero vectors of <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>⟨</mo>\n <mi>U</mi>\n <mo>⟩</mo>\n </mrow>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>d</mi>\n </msup>\n </msub>\n </msub>\n <annotation>$\\langle U\\rangle _{\\mathbb {F}_{q^d}}$</annotation>\n </semantics></math>. If we view <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> as a point set of <span></span><math>\n <semantics>\n <mrow>\n <mi>AG</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>r</mi>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathrm{AG}}\\,(r,q^n)$</annotation>\n </semantics></math>, it means that <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>⟨</mo>\n <mi>U</mi>\n <mo>⟩</mo>\n </mrow>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>d</mi>\n </msup>\n </msub>\n </msub>\n <annotation>$\\langle U \\rangle _{\\mathbb {F}_{q^d}}$</annotation>\n </semantics></math> determine the same set of directions. We prove a stronger statement when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∣</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$n \\mid m$</annotation>\n </semantics></math>. In terms of linear sets, it means that an <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math>-linear set of <span></span><math>\n <semantics>\n <mrow>\n <mi>PG</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{PG}\\,(r-1,q^n)$</annotation>\n </semantics></math> has maximum field of linearity <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math> only if it has a point of weight one. We also present some consequences regarding the size of a linear set.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3300-3315"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote an -dimensional -vector space. For an -dimensional -subspace of , assume that for each nonzero vector . If , then we prove the existence of an integer such that the set of one-dimensional -subspaces generated by nonzero vectors of is the same as the set of one-dimensional -subspaces generated by nonzero vectors of . If we view as a point set of , it means that and determine the same set of directions. We prove a stronger statement when . In terms of linear sets, it means that an -linear set of has maximum field of linearity only if it has a point of weight one. We also present some consequences regarding the size of a linear set.
让 V $V$ 表示一个 r $r$ -dimensional F q n $\mathbb {F}_{q^n}$ -vector 空间。对于 V $V$ 的一个 m $m$ -dimensional F q $\mathbb {F}_q$ -subspace U $U$ , 假设对于每个非零向量 v ∈ U ${\bf v}\rangle _\mathbb {F}_{q^n}} \cap U\right) \geqslant 2$ 。如果 n ⩽ q $n\leqslant q$ ,那么我们证明存在一个整数 1 < d ∣ n $1&lt;d \mid n$,使得由 U $U$ 的非零向量生成的一维 F q n $\mathbb {F}_{q^n}$ 子空间的集合与由⟨ U ⟩ F q d $\langle U\rangle _{\mathbb {F}_{q^d}}$ 的非零向量生成的一维 F q n $\mathbb {F}_{q^n}$ 子空间的集合相同。如果我们把 U $U$ 看作 AG ( r , q n ) ${\mathrm{AG}}\,(r,q^n)$ 的点集,这意味着 U $U$ 和 ⟨ U ⟩ F q d $langle U \rangle _{\mathbb {F}_{q^d}}$ 决定了同一组方向。当 n ∣ m $n\mid m$ 时,我们会证明一个更有力的声明。