A lightweight deep learning architecture for automatic modulation classification of wireless internet of things

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2024-09-05 DOI:10.1049/cmu2.12823
Jia Han, Zhiyong Yu, Jian Yang
{"title":"A lightweight deep learning architecture for automatic modulation classification of wireless internet of things","authors":"Jia Han,&nbsp;Zhiyong Yu,&nbsp;Jian Yang","doi":"10.1049/cmu2.12823","DOIUrl":null,"url":null,"abstract":"<p>The wireless Internet of Things (IoT) is widely used for data transmission in power systems. Wireless communication is an important part of the IoT. The existing modulation classification algorithms have low classification accuracy when facing strong electromagnetic interference, which causes decoding error link interruption and wastes wireless channel resources. Therefore, it is necessary to study signal modulation classification methods in a low signal-to-noise ratio (SNR) environment. In this paper, a lightweight Deep Neural Networks (DNNs) modulation classification method based on the Informer architecture classifier and two-dimensional (2-D) curves input of the spectral correlation function (SCF) is proposed, which uses in-phase and quadrature (I/Q) signals to generate 2-D cross-section SCF curve first and then feeds the feature curve into the Informer network to classify the modulation method. This model can better learn the robustness characteristics in a long sequence. Through testing, the classification accuracy of the modulation signal is not much lower than that of the current good classification method when the SNR is 10 dB, and this method can still show higher accuracy when hardware resources are limited. It is a compact design of a modulation classification model and easy to deploy on low-cost embedded platforms.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 18","pages":"1220-1230"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12823","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12823","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The wireless Internet of Things (IoT) is widely used for data transmission in power systems. Wireless communication is an important part of the IoT. The existing modulation classification algorithms have low classification accuracy when facing strong electromagnetic interference, which causes decoding error link interruption and wastes wireless channel resources. Therefore, it is necessary to study signal modulation classification methods in a low signal-to-noise ratio (SNR) environment. In this paper, a lightweight Deep Neural Networks (DNNs) modulation classification method based on the Informer architecture classifier and two-dimensional (2-D) curves input of the spectral correlation function (SCF) is proposed, which uses in-phase and quadrature (I/Q) signals to generate 2-D cross-section SCF curve first and then feeds the feature curve into the Informer network to classify the modulation method. This model can better learn the robustness characteristics in a long sequence. Through testing, the classification accuracy of the modulation signal is not much lower than that of the current good classification method when the SNR is 10 dB, and this method can still show higher accuracy when hardware resources are limited. It is a compact design of a modulation classification model and easy to deploy on low-cost embedded platforms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无线物联网自动调制分类的轻量级深度学习架构
无线物联网(IoT)广泛应用于电力系统的数据传输。无线通信是物联网的重要组成部分。现有的调制分类算法在面对强电磁干扰时分类精度较低,会造成解码错误链路中断,浪费无线信道资源。因此,有必要研究低信噪比(SNR)环境下的信号调制分类方法。本文提出了一种基于 Informer 架构分类器和频谱相关函数(SCF)二维(2-D)曲线输入的轻量级深度神经网络(DNNs)调制分类方法,该方法首先使用同相和正交(I/Q)信号生成二维截面 SCF 曲线,然后将特征曲线输入 Informer 网络,对调制方式进行分类。该模型可以更好地学习长序列中的鲁棒性特征。通过测试,当信噪比为 10 dB 时,调制信号的分类精度并不比目前较好的分类方法低多少,而且在硬件资源有限的情况下,这种方法仍能表现出较高的精度。这是一种设计紧凑的调制分类模型,易于在低成本嵌入式平台上部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
A deep learning-based approach for pseudo-satellite positioning Analysis of interference effect in VL-NOMA network considering signal power parameters performance An innovative model for an enhanced dual intrusion detection system using LZ-JC-DBSCAN, EPRC-RPOA and EG-GELU-GRU A high-precision timing and frequency synchronization algorithm for multi-h CPM signals Dual-user joint sensing and communications with time-divisioned bi-static radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1