The Impact of Drying Techniques on Stabilizing Microencapsulated Astaxanthin From Shrimp Shells: A Comparative Study of Spray Drying Versus Freeze Drying
Parvin Sharayei, Abbas Rohani, Yeganeh Sabeghi, Danial Gandomzadeh
{"title":"The Impact of Drying Techniques on Stabilizing Microencapsulated Astaxanthin From Shrimp Shells: A Comparative Study of Spray Drying Versus Freeze Drying","authors":"Parvin Sharayei, Abbas Rohani, Yeganeh Sabeghi, Danial Gandomzadeh","doi":"10.1111/jfpe.14755","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The research aimed to study how different drying methods (spray and freeze drying) affect the release kinetics of microencapsulated astaxanthin in various environmental conditions. Shrimp shell extract containing astaxanthin was encapsulated using different wall components (maltodextrin with different dextrose equivalents and modified starch) via a simplex lattice mixture design. The encapsulated extract was then subjected to storage at different temperatures (25°C ± 2°C and 2°C ± 4°C) and humidity conditions (52% ± 2% and 75% ± 2%), as well as exposure to UV light (four 15 W lamps, 254 nm, for 10 h). The release kinetics of astaxanthin were analyzed using various models (page, Newton Korsmeyer–Peppas model, Modified Henderson and Pabis, Diffusion approach, and Two-term exponential). The evaluation results of correlation coefficient (<i>R</i><sup>2</sup>), root mean square deviation (RMSE), and mean absolute percentage error (MAPE) values of different models showed that the astaxanthin degradation followed a two-term exponential kinetics in both types of microcapsules. Astaxanthin degradation increased with higher temperatures, humidity, and UV light exposure. However, microcapsules with equal wall compound ratios exhibited better preservation of astaxanthin. The study also emphasized the significance of optimizing storage conditions and wall materials for microencapsulated astaxanthin, as well as the utility of the two-term exponential model in enhancing stability and shelf life.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14755","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The research aimed to study how different drying methods (spray and freeze drying) affect the release kinetics of microencapsulated astaxanthin in various environmental conditions. Shrimp shell extract containing astaxanthin was encapsulated using different wall components (maltodextrin with different dextrose equivalents and modified starch) via a simplex lattice mixture design. The encapsulated extract was then subjected to storage at different temperatures (25°C ± 2°C and 2°C ± 4°C) and humidity conditions (52% ± 2% and 75% ± 2%), as well as exposure to UV light (four 15 W lamps, 254 nm, for 10 h). The release kinetics of astaxanthin were analyzed using various models (page, Newton Korsmeyer–Peppas model, Modified Henderson and Pabis, Diffusion approach, and Two-term exponential). The evaluation results of correlation coefficient (R2), root mean square deviation (RMSE), and mean absolute percentage error (MAPE) values of different models showed that the astaxanthin degradation followed a two-term exponential kinetics in both types of microcapsules. Astaxanthin degradation increased with higher temperatures, humidity, and UV light exposure. However, microcapsules with equal wall compound ratios exhibited better preservation of astaxanthin. The study also emphasized the significance of optimizing storage conditions and wall materials for microencapsulated astaxanthin, as well as the utility of the two-term exponential model in enhancing stability and shelf life.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.