{"title":"Trichosanthin elicits antitumor activity via MICU3 mediated mitochondria calcium influx","authors":"Yunbin Zhang, Xuping Ding, Qian Zhang, Cong Zeng, Hongzhuan Chen, Liming Lu","doi":"10.1016/j.jare.2024.11.001","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Trichosanthin (TK) is a glycoprotein extracted from the Chinese medicinal herb Trichosanthes kirilowi, which has anti-virus and anti-tumor activity. However, the target and detailed mechanism of TK remains elusive.<h3>Objectives</h3>We aimed to identify novel antitumor targets of TK in lung adenocarcinoma and study its anti-tumor mechanism.<h3>Methods</h3>We utilized a Lewis lung carcinoma mouse model to evaluate the inhibition of TK on tumor growth. CCK8 assay was utilized to calculate IC<sub>50</sub> of trichosanthin on A549 and H1299. In-vitro cellular assays and in-vivo xenograft mice studies were used to investigate MICU3 overexpression and TK treatment on tumor growth. Fluo-4 dye and JC-1 staining was used to measure the mitochondrial calcium levels and membrane potential. H&E and immunohistochemistry staining were applied the asses the effect of TK on tumor and microenvironment. RNA sequencing was applied to analyze transcriptome changes in TK-treated and MICU3-overexpressed tumor cells. The influence of trichosanthin on DNMT3B expression and MICU3 methylation were detected by qPCR and Western blotting. Transcriptional activity of the MICU3 gene was measured by ChIP-PCR and luciferase assays.<h3>Results</h3>Trichosanthin ihibited the tumor growth in vivo, resulting cancer cell growth inhibition and cell death, with almost no effect on normal cells. IC<sub>50</sub> of trichosanthin in A549 and H1299 cells were 62.8 μg/ml and 39.7 μg/ml, respectively. Mitochondrial Calcium Uptake Family complex MICU3 was shown to associated with favorable prognosis and was upregulated upon trichosanthin treatment, along with reduces tumor cell growth and migration, and increased cell death both in vitro and in vivo. Increased mitochondrial calcium level was observed in MICU3 overexpression cells. Pathway analysis of RNA-seq data revealed that cytokine and receptor pathways were enriched in MICU3-overexpressing cells. Trichosanthin decreased DNMT3B expression and altered MICU3 methylation while increased FOSL2 expression and reduced methylation that correlated with increased transcription of the MICU3 gene.<h3>Conclusion</h3>Trichosanthin elicits antitumor activity in lung adenocarcinoma via repressing DNMT3B and increasing FOSL2, which in turn induces MICU3-mediated mitochondrial calcium influx and tumor cell death.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.11.001","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Trichosanthin (TK) is a glycoprotein extracted from the Chinese medicinal herb Trichosanthes kirilowi, which has anti-virus and anti-tumor activity. However, the target and detailed mechanism of TK remains elusive.
Objectives
We aimed to identify novel antitumor targets of TK in lung adenocarcinoma and study its anti-tumor mechanism.
Methods
We utilized a Lewis lung carcinoma mouse model to evaluate the inhibition of TK on tumor growth. CCK8 assay was utilized to calculate IC50 of trichosanthin on A549 and H1299. In-vitro cellular assays and in-vivo xenograft mice studies were used to investigate MICU3 overexpression and TK treatment on tumor growth. Fluo-4 dye and JC-1 staining was used to measure the mitochondrial calcium levels and membrane potential. H&E and immunohistochemistry staining were applied the asses the effect of TK on tumor and microenvironment. RNA sequencing was applied to analyze transcriptome changes in TK-treated and MICU3-overexpressed tumor cells. The influence of trichosanthin on DNMT3B expression and MICU3 methylation were detected by qPCR and Western blotting. Transcriptional activity of the MICU3 gene was measured by ChIP-PCR and luciferase assays.
Results
Trichosanthin ihibited the tumor growth in vivo, resulting cancer cell growth inhibition and cell death, with almost no effect on normal cells. IC50 of trichosanthin in A549 and H1299 cells were 62.8 μg/ml and 39.7 μg/ml, respectively. Mitochondrial Calcium Uptake Family complex MICU3 was shown to associated with favorable prognosis and was upregulated upon trichosanthin treatment, along with reduces tumor cell growth and migration, and increased cell death both in vitro and in vivo. Increased mitochondrial calcium level was observed in MICU3 overexpression cells. Pathway analysis of RNA-seq data revealed that cytokine and receptor pathways were enriched in MICU3-overexpressing cells. Trichosanthin decreased DNMT3B expression and altered MICU3 methylation while increased FOSL2 expression and reduced methylation that correlated with increased transcription of the MICU3 gene.
Conclusion
Trichosanthin elicits antitumor activity in lung adenocarcinoma via repressing DNMT3B and increasing FOSL2, which in turn induces MICU3-mediated mitochondrial calcium influx and tumor cell death.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.