Farès Slimani, Laurence Hotel, Aurélie Deveau, Bertrand Aigle, Patrick Chaimbault, Vincent Carré
{"title":"Membrane-based preparation for mass spectrometry imaging of cultures of bacteria.","authors":"Farès Slimani, Laurence Hotel, Aurélie Deveau, Bertrand Aigle, Patrick Chaimbault, Vincent Carré","doi":"10.1007/s00216-024-05622-0","DOIUrl":null,"url":null,"abstract":"<p><p>The study of the dialogue between microorganisms at the molecular level is becoming essential to understand their relationship (antagonist, neutral, or beneficial interactions) and its impact on the organization of the microbial community. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption/ionization (MALDI) is a technique that reveals the spatial distribution of molecules on a sample surface that may be involved in interactions between organisms. An experimental limitation to perform MALDI MSI is a flat sample surface, which in many cases could not be achieved for bacterial colonies such as filamentous bacteria (e.g., Streptomyces). In addition, sample heterogeneity affects sample dryness and MALDI matrix deposition prior to MSI. To avoid such problems, we introduce an additional step in the sample preparation. A polymeric membrane is interposed between the microorganisms and the agar-based culture medium, allowing the removal of bacterial colonies prior to MSI of the homogeneous culture medium. A proof of concept was evaluated on Streptomyces ambofaciens (a soil bacterium) cultures on solid media. As the mycelium was removed at the same time as the polymeric membrane, the metabolites released into the medium were spatially resolved by MALDI MSI. In addition, extraction of the recovered mycelium from the membrane confirmed the identification of the metabolites by ESI MS/MS analysis. This approach allows both the spatial distribution of metabolites produced by microorganisms in an agar medium to be studied under well-controlled sample preparation and their structure to be elucidated. This capability is illustrated using desferrioxamine E, a siderophore produced by S. ambofaciens.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05622-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The study of the dialogue between microorganisms at the molecular level is becoming essential to understand their relationship (antagonist, neutral, or beneficial interactions) and its impact on the organization of the microbial community. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption/ionization (MALDI) is a technique that reveals the spatial distribution of molecules on a sample surface that may be involved in interactions between organisms. An experimental limitation to perform MALDI MSI is a flat sample surface, which in many cases could not be achieved for bacterial colonies such as filamentous bacteria (e.g., Streptomyces). In addition, sample heterogeneity affects sample dryness and MALDI matrix deposition prior to MSI. To avoid such problems, we introduce an additional step in the sample preparation. A polymeric membrane is interposed between the microorganisms and the agar-based culture medium, allowing the removal of bacterial colonies prior to MSI of the homogeneous culture medium. A proof of concept was evaluated on Streptomyces ambofaciens (a soil bacterium) cultures on solid media. As the mycelium was removed at the same time as the polymeric membrane, the metabolites released into the medium were spatially resolved by MALDI MSI. In addition, extraction of the recovered mycelium from the membrane confirmed the identification of the metabolites by ESI MS/MS analysis. This approach allows both the spatial distribution of metabolites produced by microorganisms in an agar medium to be studied under well-controlled sample preparation and their structure to be elucidated. This capability is illustrated using desferrioxamine E, a siderophore produced by S. ambofaciens.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.