Neurodevelopmental Process Monitoring of Cytosine Arabinoside-Exposed Neurons Using Raman Spectroscopy.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Applied Spectroscopy Pub Date : 2024-11-04 DOI:10.1177/00037028241289147
Kosuke Hashimoto, Hidetoshi Sato
{"title":"Neurodevelopmental Process Monitoring of Cytosine Arabinoside-Exposed Neurons Using Raman Spectroscopy.","authors":"Kosuke Hashimoto, Hidetoshi Sato","doi":"10.1177/00037028241289147","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy is used to monitor the development of live neurons exposed to cytosine arabinoside (ara-C). Ara-C is widely used to culture neurons and exclude non-neuronal cells. In this study, Raman spectra obtained from neurons exposed to ara-C were plotted using an analytical model of neuronal development to evaluate the impact of ara-C on neuronal development. After two days of culturing, neurons were exposed to ara-C for 24 h at final concentrations of 0 (control), 5, and 25 μM. Principal component analysis (PCA) was performed to build an analytical model for evaluating neurodevelopmental disorders caused by ara-C treatment. We projected the Raman spectra obtained from ara-C-treated cells onto the control group dataset. The distribution of PC1 scores for neurons exposed to ara-C at a final concentration of 5 μM was not significantly different from that of the control group. In contrast, under a final concentration of 25 μM, the data population at 10 and 15 days of culturing overlapped significantly with that of neurons at 4 days of normal culturing. These results suggest that Raman spectroscopy can detect very small physiological alterations in the neurons even after a short-term exposure (24 h) of ara-C. Our analytical method has high potential to evaluate the developmental stages for living neurons under exposure to chemicals.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241289147"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241289147","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy is used to monitor the development of live neurons exposed to cytosine arabinoside (ara-C). Ara-C is widely used to culture neurons and exclude non-neuronal cells. In this study, Raman spectra obtained from neurons exposed to ara-C were plotted using an analytical model of neuronal development to evaluate the impact of ara-C on neuronal development. After two days of culturing, neurons were exposed to ara-C for 24 h at final concentrations of 0 (control), 5, and 25 μM. Principal component analysis (PCA) was performed to build an analytical model for evaluating neurodevelopmental disorders caused by ara-C treatment. We projected the Raman spectra obtained from ara-C-treated cells onto the control group dataset. The distribution of PC1 scores for neurons exposed to ara-C at a final concentration of 5 μM was not significantly different from that of the control group. In contrast, under a final concentration of 25 μM, the data population at 10 and 15 days of culturing overlapped significantly with that of neurons at 4 days of normal culturing. These results suggest that Raman spectroscopy can detect very small physiological alterations in the neurons even after a short-term exposure (24 h) of ara-C. Our analytical method has high potential to evaluate the developmental stages for living neurons under exposure to chemicals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用拉曼光谱监测暴露于阿拉伯苷的胞嘧啶神经元的神经发育过程
拉曼光谱用于监测暴露于阿糖胞苷(Ara-C)的活神经元的发育情况。Ara-C 被广泛用于培养神经元和排除非神经元细胞。本研究利用神经元发育分析模型绘制了暴露于 Ara-C 的神经元的拉曼光谱,以评估 Ara-C 对神经元发育的影响。培养两天后,将神经元暴露于最终浓度为 0(对照组)、5 和 25 μM 的 ara-C 中 24 小时。我们进行了主成分分析(PCA),以建立一个分析模型,用于评估阿拉卡治疗导致的神经发育障碍。我们将从阿拉卡处理过的细胞中获得的拉曼光谱投射到对照组数据集上。最终浓度为 5 μM 的阿拉卡暴露神经元的 PC1 得分分布与对照组无显著差异。相反,在最终浓度为 25 μM 时,培养 10 天和 15 天的数据群与正常培养 4 天的神经元数据群明显重叠。这些结果表明,即使在短期(24 小时)接触 ara-C 后,拉曼光谱也能检测到神经元中非常微小的生理变化。我们的分析方法在评估暴露于化学物质的活体神经元的发育阶段方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
期刊最新文献
Dual-Gas Sensor Employing Wavelength-Stabilized Tunable Diode Laser Absorption Spectroscopy and H-Infinity Filtering Algorithm. Near Real-Time Measurement of Airborne Carbon Nanotubes with Metals Using Raman-Spark Emission Spectroscopy. Cavity Ring-Down Spectroscopy Performance and Procedures for High-Throughput δ18O and δ2H Measurement in Water Using "Express" Mode. Focusing Effects on Laser-Induced Plasma Parameters: Applications to a Graphite Target Under Martian Atmospheric Conditions. Acute Leukemia Diagnosis Through AI-Enhanced Attenuated Total Reflection Fourier Transform Infrared Spectroscopy of Peripheral Blood Smears.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1