Activating the Mn Single Atomic Center for an Efficient Actual Active Site of the Oxygen Reduction Reaction by Spin-State Regulation.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-05 DOI:10.1021/jacs.4c13137
Kiwon Kim, Gyuchan Kim, Taeyoung Jeong, Wonyoung Lee, Yunho Yang, Byung-Hyun Kim, Bubryur Kim, Byeongyong Lee, Joonhee Kang, Myeongjin Kim
{"title":"Activating the Mn Single Atomic Center for an Efficient Actual Active Site of the Oxygen Reduction Reaction by Spin-State Regulation.","authors":"Kiwon Kim, Gyuchan Kim, Taeyoung Jeong, Wonyoung Lee, Yunho Yang, Byung-Hyun Kim, Bubryur Kim, Byeongyong Lee, Joonhee Kang, Myeongjin Kim","doi":"10.1021/jacs.4c13137","DOIUrl":null,"url":null,"abstract":"<p><p>The ligand engineering for single-atom catalysts (SACs) is considered a cutting-edge strategy to tailor their electrocatalytic activity. However, the fundamental reasons underlying the reaction mechanism and the contemplation for which the actual active site for the catalytic reaction depends on the pyrrolic and pyridinic N ligand structure remain to be fully understood. Herein, we first reveal the relationship between the oxygen reduction reaction (ORR) activity and the N ligand structure for the manganese (Mn) single atomic site by the precisely regulated pyrrolic and pyridinic N<sub>4</sub> coordination environment. Experimental and theoretical analyses reveal that the long Mn-N distance in Mn-pyrrolic N<sub>4</sub> enables a high spin state of the Mn center, which is beneficial to reduce the adsorption strength of oxygen intermediates by the high filling state in antibond orbitals, thereby activating the Mn single atomic site to achieve a half-wave potential of 0.896 V vs RHE with outstanding stability in acidic media. This work provides a new fundamental insight into understanding the ORR catalytic origin of Mn SACs and the rational design strategy of SACs for various electrocatalytic reactions.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ligand engineering for single-atom catalysts (SACs) is considered a cutting-edge strategy to tailor their electrocatalytic activity. However, the fundamental reasons underlying the reaction mechanism and the contemplation for which the actual active site for the catalytic reaction depends on the pyrrolic and pyridinic N ligand structure remain to be fully understood. Herein, we first reveal the relationship between the oxygen reduction reaction (ORR) activity and the N ligand structure for the manganese (Mn) single atomic site by the precisely regulated pyrrolic and pyridinic N4 coordination environment. Experimental and theoretical analyses reveal that the long Mn-N distance in Mn-pyrrolic N4 enables a high spin state of the Mn center, which is beneficial to reduce the adsorption strength of oxygen intermediates by the high filling state in antibond orbitals, thereby activating the Mn single atomic site to achieve a half-wave potential of 0.896 V vs RHE with outstanding stability in acidic media. This work provides a new fundamental insight into understanding the ORR catalytic origin of Mn SACs and the rational design strategy of SACs for various electrocatalytic reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自旋态调节激活锰单原子中心,实现氧还原反应的高效实际活性位点。
单原子催化剂(SAC)的配体工程被认为是调整其电催化活性的最前沿策略。然而,反应机理的根本原因以及催化反应的实际活性位点取决于吡咯和吡啶 N 配体结构的设想仍有待充分理解。在此,我们通过精确调节吡咯和吡啶 N4 配位环境,首次揭示了锰(Mn)单原子位点的氧还原反应(ORR)活性与 N 配体结构之间的关系。实验和理论分析表明,Mn-吡咯烷 N4 中较长的 Mn-N 间距使 Mn 中心处于高自旋状态,这有利于通过反键轨道的高填充状态降低氧中间体的吸附强度,从而激活 Mn 单原子位点,使其在酸性介质中具有出色的稳定性,半波电位达到 0.896 V vs RHE。这项工作为理解锰 SAC 的 ORR 催化起源以及各种电催化反应中 SAC 的合理设计策略提供了新的基础见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Aqueous Electrocatalytic Hydrogenation Depolymerization of Lignin β-O-4 Linkage via Selective Caryl-O(C) Bond Cleavage: The Regulation of Adsorption. Activating the Mn Single Atomic Center for an Efficient Actual Active Site of the Oxygen Reduction Reaction by Spin-State Regulation. Antiaromatic Metallacyclopentatriene Complexes. Constructing Flexible Crystalline Porous Organic Salts via a Zwitterionic Strategy. Continuous Electrosynthesis of Pure H2O2 Solution with Medical-Grade Concentration by a Conductive Ni-Phthalocyanine-Based Covalent Organic Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1