Seyedeh Fatemeh Nami-Ana, Masoud A Mehrgardi, Mohammad Mofidfar, Richard N Zare
{"title":"Sustained Regeneration of Hydrogen Peroxide at the Water-Gas Interface of Electrogenerated Microbubbles on an Electrode Surface.","authors":"Seyedeh Fatemeh Nami-Ana, Masoud A Mehrgardi, Mohammad Mofidfar, Richard N Zare","doi":"10.1021/jacs.4c11422","DOIUrl":null,"url":null,"abstract":"<p><p>Microbubbles, inside-out microdroplets, act as extraordinary microreactors to facilitate thermodynamically unfavorable reactions in bulk solutions of water. We explored the formation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and its sustained regeneration at the interface of water-gas microbubbles. For this purpose, the chemiluminescence of luminol was recorded by a digital camera to map the intensity of blue light emission over the time of about 20 min. The formation and regeneration of hydrogen peroxide were also monitored by fluorescence microscopic imaging of a hydrogen peroxide probe. The microscopic images consistently show a stable glow around the microbubbles over time during which the formed hydrogen peroxide diffuses into the bulk solution. This observation confirms that the concentration of H<sub>2</sub>O<sub>2</sub> at the interface is 30 times higher than that in the water solution bulk after several minutes, which can be attributed to its regeneration at the water-gas interface. These findings increase our understanding of why the chemistries of gas microbubbles in water and water microdroplets surrounded by gas are so distinct from those of bulk-phase water.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31945-31949"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbubbles, inside-out microdroplets, act as extraordinary microreactors to facilitate thermodynamically unfavorable reactions in bulk solutions of water. We explored the formation of hydrogen peroxide (H2O2) and its sustained regeneration at the interface of water-gas microbubbles. For this purpose, the chemiluminescence of luminol was recorded by a digital camera to map the intensity of blue light emission over the time of about 20 min. The formation and regeneration of hydrogen peroxide were also monitored by fluorescence microscopic imaging of a hydrogen peroxide probe. The microscopic images consistently show a stable glow around the microbubbles over time during which the formed hydrogen peroxide diffuses into the bulk solution. This observation confirms that the concentration of H2O2 at the interface is 30 times higher than that in the water solution bulk after several minutes, which can be attributed to its regeneration at the water-gas interface. These findings increase our understanding of why the chemistries of gas microbubbles in water and water microdroplets surrounded by gas are so distinct from those of bulk-phase water.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.