{"title":"Predicting nodal response to neoadjuvant treatment in breast cancer with core biopsy biomarkers of tumor microenvironment using data mining.","authors":"Nina Pislar, Gorana Gasljevic, Erika Matos, Gasper Pilko, Janez Zgajnar, Andraz Perhavec","doi":"10.1007/s10549-024-07539-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To generate a model for predicting nodal response to neoadjuvant systemic treatment (NAST) in biopsy-proven node-positive breast cancer patients (cN+) that incorporates tumor microenvironment (TME) characteristics and could be used for planning the axillary surgical staging procedure.</p><p><strong>Methods: </strong>Clinical and pathologic features were retrospectively collected for 437 patients. Core biopsy (CB) samples were reviewed for stromal content and tumor-infiltrating lymphocytes (TIL). Orange Datamining Toolbox was used for model generation and assessment.</p><p><strong>Results: </strong>151/437 (34.6%) patients achieved nodal pCR (ypN0). The following 5 variables were included in the prediction model: ER, Her-2, grade, stroma content and TILs. After stratified tenfold cross-validation, the logistic regression algorithm achieved and area under the ROC curve (AUC) of 0.86 and F1 score of 0.72. Nomogram was used for visualization.</p><p><strong>Conclusions: </strong>We developed a clinical tool to predict nodal pCR for cN+ patients after NAST that includes biomarkers of TME and achieves an AUC of 0.86 after tenfold cross-validation.</p>","PeriodicalId":9133,"journal":{"name":"Breast Cancer Research and Treatment","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-024-07539-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To generate a model for predicting nodal response to neoadjuvant systemic treatment (NAST) in biopsy-proven node-positive breast cancer patients (cN+) that incorporates tumor microenvironment (TME) characteristics and could be used for planning the axillary surgical staging procedure.
Methods: Clinical and pathologic features were retrospectively collected for 437 patients. Core biopsy (CB) samples were reviewed for stromal content and tumor-infiltrating lymphocytes (TIL). Orange Datamining Toolbox was used for model generation and assessment.
Results: 151/437 (34.6%) patients achieved nodal pCR (ypN0). The following 5 variables were included in the prediction model: ER, Her-2, grade, stroma content and TILs. After stratified tenfold cross-validation, the logistic regression algorithm achieved and area under the ROC curve (AUC) of 0.86 and F1 score of 0.72. Nomogram was used for visualization.
Conclusions: We developed a clinical tool to predict nodal pCR for cN+ patients after NAST that includes biomarkers of TME and achieves an AUC of 0.86 after tenfold cross-validation.
期刊介绍:
Breast Cancer Research and Treatment provides the surgeon, radiotherapist, medical oncologist, endocrinologist, epidemiologist, immunologist or cell biologist investigating problems in breast cancer a single forum for communication. The journal creates a "market place" for breast cancer topics which cuts across all the usual lines of disciplines, providing a site for presenting pertinent investigations, and for discussing critical questions relevant to the entire field. It seeks to develop a new focus and new perspectives for all those concerned with breast cancer.