{"title":"Whole transcriptome sequencing of testis and epididymis reveals genes associated with sperm development in roosters.","authors":"Shihao Guo, Bailin Cong, Liyang Zhu, Yao Zhang, Ying Yang, Xiaolong Qi, Xiangguo Wang, Longfei Xiao, Cheng Long, Yaxi Xu, Xihui Sheng","doi":"10.1186/s12864-024-10836-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development.</p><p><strong>Results: </strong>In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from \"Jing Hong No.1\" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility.</p><p><strong>Conclusions: </strong>Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10836-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development.
Results: In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from "Jing Hong No.1" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility.
Conclusions: Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.