Leyna R. Stemle, Julie M. Sorfleet, Chelsea L. Moore, Jack T. Christie, Christopher A. Searcy, Betsie B. Rothermel
{"title":"Growth and Survival Outcomes for Immature Gopher Tortoises in Contrasting Habitats: A Test of Drone-Based Habitat Assessment","authors":"Leyna R. Stemle, Julie M. Sorfleet, Chelsea L. Moore, Jack T. Christie, Christopher A. Searcy, Betsie B. Rothermel","doi":"10.1002/ece3.70509","DOIUrl":null,"url":null,"abstract":"<p>Juvenile growth rate is a critical demographic parameter, as it shortens the time to maturity and often dictates how long individuals remain vulnerable to predation. However, developing a mechanistic understanding of the factors determining growth rates can be difficult for wild populations. The gopher tortoise (<i>Gopherus polyphemus</i>) is an ecosystem engineer threatened by habitat loss and deficient management of pinelands in the southeastern United States. We investigated the factors governing immature gopher tortoise growth and explored the use of drone-based imagery for habitat assessment by comparing predictive models based on ground-based plant surveys versus drone-derived data. From 2021 to 2022, we tracked and measured immature tortoises in native sandhill and human-modified, ruderal habitat in south-central Florida. Using quarterly, high-resolution drone imagery, we quantified plant cover types and vegetation indices at each occupied burrow and measured the frequency of occurrence of forage species by hand. Annual growth rates of immature tortoises in ruderal habitat were higher than those in sandhill and were the highest published for this species. Models based on drone-derived data were able to explain similar proportions of variation in growth as ground-collected measures of forage, especially during the late dry season when both types of models were most predictive. Habitat differences in forage nitrogen content were also more pronounced during this season, when dominant ground cover in ruderal habitat (bahiagrass) had much higher nitrogen content than dominant ground cover in sandhill (wiregrass). Despite concerns about potential growth-survival trade-offs, tortoises in ruderal habitat did not exhibit lower apparent survival. Our findings indicate that habitat dominated by nutritious non-native grass can provide a valuable supplement to native sandhill through the mechanism of increased growth rates due to higher forage quality. Finally, our study demonstrates that drone technology may facilitate management by providing less labor-intensive ways to assess habitat quality for this and other imperiled herbivores.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"14 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70509","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Juvenile growth rate is a critical demographic parameter, as it shortens the time to maturity and often dictates how long individuals remain vulnerable to predation. However, developing a mechanistic understanding of the factors determining growth rates can be difficult for wild populations. The gopher tortoise (Gopherus polyphemus) is an ecosystem engineer threatened by habitat loss and deficient management of pinelands in the southeastern United States. We investigated the factors governing immature gopher tortoise growth and explored the use of drone-based imagery for habitat assessment by comparing predictive models based on ground-based plant surveys versus drone-derived data. From 2021 to 2022, we tracked and measured immature tortoises in native sandhill and human-modified, ruderal habitat in south-central Florida. Using quarterly, high-resolution drone imagery, we quantified plant cover types and vegetation indices at each occupied burrow and measured the frequency of occurrence of forage species by hand. Annual growth rates of immature tortoises in ruderal habitat were higher than those in sandhill and were the highest published for this species. Models based on drone-derived data were able to explain similar proportions of variation in growth as ground-collected measures of forage, especially during the late dry season when both types of models were most predictive. Habitat differences in forage nitrogen content were also more pronounced during this season, when dominant ground cover in ruderal habitat (bahiagrass) had much higher nitrogen content than dominant ground cover in sandhill (wiregrass). Despite concerns about potential growth-survival trade-offs, tortoises in ruderal habitat did not exhibit lower apparent survival. Our findings indicate that habitat dominated by nutritious non-native grass can provide a valuable supplement to native sandhill through the mechanism of increased growth rates due to higher forage quality. Finally, our study demonstrates that drone technology may facilitate management by providing less labor-intensive ways to assess habitat quality for this and other imperiled herbivores.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.