{"title":"Study of prediction model for high-grade meningioma using fractal geometry combined with radiological features.","authors":"Zhaoxin Fan, Aili Gao, Jie Zhang, Xiangyi Meng, Qunxin Yin, Yongze Shen, Renjie Hu, Shang Gao, Hongge Yang, Yingqi Xu, Hongsheng Liang","doi":"10.1007/s11060-024-04867-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To establish a prediction model combining fractal geometry and radiological features, which consider the complexity of tumour morphology advancing beyond the limitations of previous models.</p><p><strong>Methods: </strong>A total of 227 patients at the First Affiliated Hospital of Harbin Medical University from July 2021 to November 2023 were included. Fractal geometry was calculated and the radiomics features were extracted from regions of interest (ROIs). Weighted Gene Co-Expression Network Analysis (WGCNA) was employed for preliminary screening to identify those that were significantly associated with high-grade meningioma. In the training cohort, the least absolute shrinkage and selection operator (LASSO) regression was employed for further screening the radiomics features. Area under curve (AUC) was to evaluate models' performance.</p><p><strong>Results: </strong>In entire patient cohort, low-grade meningiomas had significantly lower fractal dimensions (P = 0.01), while high-grade meningiomas had higher lacunarity (P = 0.049). Fractal dimension (OR 6.8, 95% CI 1.49-36.51, P = 0.017), lacunarity (OR 3.7, 95% CI 1.36-11.75, P = 0.014), and Rscore (OR 2.8, 95% CI 1.55-5.75, P = 0.002) were independent risk factors for high-grade meningiomas. The final results demonstrated that the \"fractal geometry + radiological features (semantic features + radiomics features)\" model exhibited the most optimal performance in predicting high-grade meningioma, with an AUC of 0.854 in the training cohort and 0.757 in the validation cohort.</p><p><strong>Conclusion: </strong>Significant differences in fractal dimension and lacunarity exist between high-grade and low-grade meningiomas, which can be potential predictive factors. The developed predictive model demonstrated good performance in predicting high-grade meningiomas.</p>","PeriodicalId":16425,"journal":{"name":"Journal of Neuro-Oncology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuro-Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11060-024-04867-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To establish a prediction model combining fractal geometry and radiological features, which consider the complexity of tumour morphology advancing beyond the limitations of previous models.
Methods: A total of 227 patients at the First Affiliated Hospital of Harbin Medical University from July 2021 to November 2023 were included. Fractal geometry was calculated and the radiomics features were extracted from regions of interest (ROIs). Weighted Gene Co-Expression Network Analysis (WGCNA) was employed for preliminary screening to identify those that were significantly associated with high-grade meningioma. In the training cohort, the least absolute shrinkage and selection operator (LASSO) regression was employed for further screening the radiomics features. Area under curve (AUC) was to evaluate models' performance.
Results: In entire patient cohort, low-grade meningiomas had significantly lower fractal dimensions (P = 0.01), while high-grade meningiomas had higher lacunarity (P = 0.049). Fractal dimension (OR 6.8, 95% CI 1.49-36.51, P = 0.017), lacunarity (OR 3.7, 95% CI 1.36-11.75, P = 0.014), and Rscore (OR 2.8, 95% CI 1.55-5.75, P = 0.002) were independent risk factors for high-grade meningiomas. The final results demonstrated that the "fractal geometry + radiological features (semantic features + radiomics features)" model exhibited the most optimal performance in predicting high-grade meningioma, with an AUC of 0.854 in the training cohort and 0.757 in the validation cohort.
Conclusion: Significant differences in fractal dimension and lacunarity exist between high-grade and low-grade meningiomas, which can be potential predictive factors. The developed predictive model demonstrated good performance in predicting high-grade meningiomas.
期刊介绍:
The Journal of Neuro-Oncology is a multi-disciplinary journal encompassing basic, applied, and clinical investigations in all research areas as they relate to cancer and the central nervous system. It provides a single forum for communication among neurologists, neurosurgeons, radiotherapists, medical oncologists, neuropathologists, neurodiagnosticians, and laboratory-based oncologists conducting relevant research. The Journal of Neuro-Oncology does not seek to isolate the field, but rather to focus the efforts of many disciplines in one publication through a format which pulls together these diverse interests. More than any other field of oncology, cancer of the central nervous system requires multi-disciplinary approaches. To alleviate having to scan dozens of journals of cell biology, pathology, laboratory and clinical endeavours, JNO is a periodical in which current, high-quality, relevant research in all aspects of neuro-oncology may be found.