Satenik Valesyan, Manasses Jora, Balasubrahmanyam Addepalli, Patrick A Limbach
{"title":"Stress-induced modification of <i>Escherichia coli</i> tRNA generates 5-methylcytidine in the variable loop.","authors":"Satenik Valesyan, Manasses Jora, Balasubrahmanyam Addepalli, Patrick A Limbach","doi":"10.1073/pnas.2317857121","DOIUrl":null,"url":null,"abstract":"<p><p>There has been recent interest in trying to understand the connection between transfer RNA (tRNA) posttranscriptional modifications and changes in-cellular environmental conditions. Here, we report on the identification of the modified nucleoside 5-methylcytidine (m<sup>5</sup>C) in <i>Escherichia coli</i> tRNAs. This modification was determined to be present at position 49 of tRNA Tyr-QUA-II. Moreover, m<sup>5</sup>C levels in this tRNA are significantly elevated under high reactive oxygen specieis (ROS) conditions in <i>E. coli</i> cells. We identified the known ribosomal RNA methyltransferase rsmF as the enzyme responsible for m<sup>5</sup>C synthesis in tRNA and enzyme transcript levels are responsive to elevated levels of ROS in the cell. We further find that changes in m<sup>5</sup>C levels in this tRNA are not specific to Fenton-like reaction conditions elevating ROS, but heat shock can also induce increased modification of tRNA Tyr-QUA-II. Altogether, this work illustrates how cells adapt to changing environmental conditions through variations in tRNA modification profiles.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2317857121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There has been recent interest in trying to understand the connection between transfer RNA (tRNA) posttranscriptional modifications and changes in-cellular environmental conditions. Here, we report on the identification of the modified nucleoside 5-methylcytidine (m5C) in Escherichia coli tRNAs. This modification was determined to be present at position 49 of tRNA Tyr-QUA-II. Moreover, m5C levels in this tRNA are significantly elevated under high reactive oxygen specieis (ROS) conditions in E. coli cells. We identified the known ribosomal RNA methyltransferase rsmF as the enzyme responsible for m5C synthesis in tRNA and enzyme transcript levels are responsive to elevated levels of ROS in the cell. We further find that changes in m5C levels in this tRNA are not specific to Fenton-like reaction conditions elevating ROS, but heat shock can also induce increased modification of tRNA Tyr-QUA-II. Altogether, this work illustrates how cells adapt to changing environmental conditions through variations in tRNA modification profiles.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.