{"title":"Cellular diffusion processes in singularly perturbed domains.","authors":"Paul C Bressloff","doi":"10.1007/s00285-024-02160-2","DOIUrl":null,"url":null,"abstract":"<p><p>There are many processes in cell biology that can be modeled in terms of particles diffusing in a two-dimensional (2D) or three-dimensional (3D) bounded domain <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </mrow> </math> containing a set of small subdomains or interior compartments <math><msub><mi>U</mi> <mi>j</mi></msub> </math> , <math><mrow><mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>N</mi></mrow> </math> (singularly-perturbed diffusion problems). The domain <math><mi>Ω</mi></math> could represent the cell membrane, the cell cytoplasm, the cell nucleus or the extracellular volume, while an individual compartment could represent a synapse, a membrane protein cluster, a biological condensate, or a quorum sensing bacterial cell. In this review we use a combination of matched asymptotic analysis and Green's function methods to solve a general type of singular boundary value problems (BVP) in 2D and 3D, in which an inhomogeneous Robin condition is imposed on each interior boundary <math><mrow><mi>∂</mi> <msub><mi>U</mi> <mi>j</mi></msub> </mrow> </math> . This allows us to incorporate a variety of previous studies of singularly perturbed diffusion problems into a single mathematical modeling framework. We mainly focus on steady-state solutions and the approach to steady-state, but also highlight some of the current challenges in dealing with time-dependent solutions and randomly switching processes.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 6","pages":"58"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02160-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There are many processes in cell biology that can be modeled in terms of particles diffusing in a two-dimensional (2D) or three-dimensional (3D) bounded domain containing a set of small subdomains or interior compartments , (singularly-perturbed diffusion problems). The domain could represent the cell membrane, the cell cytoplasm, the cell nucleus or the extracellular volume, while an individual compartment could represent a synapse, a membrane protein cluster, a biological condensate, or a quorum sensing bacterial cell. In this review we use a combination of matched asymptotic analysis and Green's function methods to solve a general type of singular boundary value problems (BVP) in 2D and 3D, in which an inhomogeneous Robin condition is imposed on each interior boundary . This allows us to incorporate a variety of previous studies of singularly perturbed diffusion problems into a single mathematical modeling framework. We mainly focus on steady-state solutions and the approach to steady-state, but also highlight some of the current challenges in dealing with time-dependent solutions and randomly switching processes.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.