Lexing Liang , Junjing Duan , Cong Zhang , Heqi Zhang , Kailei Lu , Yanli Shi , Jianqi Qi , Tiecheng Lu
{"title":"Promoting transparency: Defect-driven sintering of Gd2Zr2O7 ceramics for advanced radiation applications","authors":"Lexing Liang , Junjing Duan , Cong Zhang , Heqi Zhang , Kailei Lu , Yanli Shi , Jianqi Qi , Tiecheng Lu","doi":"10.1016/j.jeurceramsoc.2024.117030","DOIUrl":null,"url":null,"abstract":"<div><div>Transparent Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (GZO) ceramics show significant potential for radiation detection and nuclear energy applications. However, scalable production through cost-effective solid-state vacuum sintering is challenging due to the material's high melting point and low thermal conductivity. This study introduces a novel approach by incorporating excess Gd to increase lattice defects, such as cation disorder and oxygen vacancies, which have low formation energy. This strategy lowers the energy barrier for ion diffusion, enhances material migration during sintering, and promotes the elimination of residual pores, leading to high densification. We examined the densification behavior of GZO compositions with varying Gd content (Gd<sub>1.8</sub>Zr<sub>2</sub>O<sub>6.7</sub> to Gd<sub>2.5</sub>Zr<sub>2</sub>O<sub>7.75</sub>) during vacuum sintering at 1450°C to 1900°C, focusing on phase transformation, grain growth, and pore elimination. Notably, the optimal sample achieved 78.3 % transmittance, approaching the theoretical maximum. These findings offer a promising route for the large-scale production and commercialization of transparent GZO ceramics for advanced radiation applications.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 117030"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924009038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent Gd2Zr2O7 (GZO) ceramics show significant potential for radiation detection and nuclear energy applications. However, scalable production through cost-effective solid-state vacuum sintering is challenging due to the material's high melting point and low thermal conductivity. This study introduces a novel approach by incorporating excess Gd to increase lattice defects, such as cation disorder and oxygen vacancies, which have low formation energy. This strategy lowers the energy barrier for ion diffusion, enhances material migration during sintering, and promotes the elimination of residual pores, leading to high densification. We examined the densification behavior of GZO compositions with varying Gd content (Gd1.8Zr2O6.7 to Gd2.5Zr2O7.75) during vacuum sintering at 1450°C to 1900°C, focusing on phase transformation, grain growth, and pore elimination. Notably, the optimal sample achieved 78.3 % transmittance, approaching the theoretical maximum. These findings offer a promising route for the large-scale production and commercialization of transparent GZO ceramics for advanced radiation applications.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.