Cauchy-Schwarz bounded trade-off weighting for causal inference with small sample sizes

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-29 DOI:10.1016/j.ijar.2024.109311
Qin Ma, Shikui Tu, Lei Xu
{"title":"Cauchy-Schwarz bounded trade-off weighting for causal inference with small sample sizes","authors":"Qin Ma,&nbsp;Shikui Tu,&nbsp;Lei Xu","doi":"10.1016/j.ijar.2024.109311","DOIUrl":null,"url":null,"abstract":"<div><div>The difficulty of causal inference for small-sample-size data lies in the issue of inefficiency that the variance of the estimators may be large. Some existing weighting methods adopt the idea of bias-variance trade-off, but they require manual specification of the trade-off parameters. To overcome this drawback, in this article, we propose a Cauchy-Schwarz Bounded Trade-off Weighting (CBTW) method, in which the trade-off parameter is theoretically derived to guarantee a small Mean Square Error (MSE) in estimation. We theoretically prove that optimizing the objective function of CBTW, which is the Cauchy-Schwarz upper-bound of the MSE for causal effect estimators, contributes to minimizing the MSE. Moreover, since the upper-bound consists of the variance and the squared <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norm of covariate differences, CBTW can not only estimate the causal effects efficiently, but also keep the covariates balanced. Experimental results on both simulation data and real-world data show that the CBTW outperforms most existing methods especially under small sample size scenarios.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001981","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The difficulty of causal inference for small-sample-size data lies in the issue of inefficiency that the variance of the estimators may be large. Some existing weighting methods adopt the idea of bias-variance trade-off, but they require manual specification of the trade-off parameters. To overcome this drawback, in this article, we propose a Cauchy-Schwarz Bounded Trade-off Weighting (CBTW) method, in which the trade-off parameter is theoretically derived to guarantee a small Mean Square Error (MSE) in estimation. We theoretically prove that optimizing the objective function of CBTW, which is the Cauchy-Schwarz upper-bound of the MSE for causal effect estimators, contributes to minimizing the MSE. Moreover, since the upper-bound consists of the variance and the squared 2-norm of covariate differences, CBTW can not only estimate the causal effects efficiently, but also keep the covariates balanced. Experimental results on both simulation data and real-world data show that the CBTW outperforms most existing methods especially under small sample size scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于小样本因果推断的考奇-施瓦茨有界权衡加权法
对小样本数据进行因果推断的难点在于估计值方差可能很大的低效率问题。现有的一些加权方法采用了偏差-方差权衡的思想,但需要人工指定权衡参数。为了克服这一缺点,我们在本文中提出了一种 Cauchy-Schwarz 有界权衡加权(CBTW)方法,该方法从理论上推导出权衡参数,以保证估计的均方误差(MSE)很小。我们从理论上证明,优化 CBTW 的目标函数(即因果效应估计的 MSE 的 Cauchy-Schwarz 上限)有助于最小化 MSE。此外,由于上界由协方差的方差和平方ℓ2-正态组成,因此 CBTW 不仅能有效估计因果效应,还能保持协方差的平衡。在模拟数据和实际数据上的实验结果表明,CBTW 优于大多数现有方法,尤其是在样本量较小的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1