Qian Yu , Lixin Gao , Linhao Xu , Yubing Han , Yu Cao , Jianjun Xi , Yigang Zhong , Linjie Li , Liteng Shen , Jinxin Che , Xiaowu Dong , Chong Zhang , Linghui Zeng , Huajian Zhu , Jiaan Shao , Yizhou Xu , Jia Li , Yubo Zhou , Jiankang Zhang
{"title":"Exploration of novel 20S proteasome activators featuring anthraquinone structures and their application in hypoxic cardiomyocyte protection","authors":"Qian Yu , Lixin Gao , Linhao Xu , Yubing Han , Yu Cao , Jianjun Xi , Yigang Zhong , Linjie Li , Liteng Shen , Jinxin Che , Xiaowu Dong , Chong Zhang , Linghui Zeng , Huajian Zhu , Jiaan Shao , Yizhou Xu , Jia Li , Yubo Zhou , Jiankang Zhang","doi":"10.1016/j.bmc.2024.117983","DOIUrl":null,"url":null,"abstract":"<div><div>Under hypoxic conditions, the accumulation of misfolded proteins primarily relies on the autonomous activity of 20S proteasome for degradation. The buildup of toxic proteins in cardiomyocyte contribute to various cardiovascular diseases. Therefore, enhancing the 20S proteasome degradation capacity and restoring protein homeostasis in myocardial cells with small molecule activators represent a promising therapeutic strategy for the treatment of ischemic cardiomyopathy. In this study, the lead compound 8016–8398 was identified through virtual screening, and subsequent structure optimization resulted in a series of highly potent 20S proteasome activators. Intracellular protein degradation assessment revealed that these compounds possessed abilities to alleviate endoplasmic reticulum stress, as demonstrated by the luciferase reporter system. Additionally, selected compound B-03 significantly enhanced the survival rate of hypoxic-damaged cardiomyocytes. Mechanistic investigations verified B-03 rescued hypoxic damaged cardiomyocyte through apoptosis inhibition and proliferation promotion.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"115 ","pages":"Article 117983"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003973","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Under hypoxic conditions, the accumulation of misfolded proteins primarily relies on the autonomous activity of 20S proteasome for degradation. The buildup of toxic proteins in cardiomyocyte contribute to various cardiovascular diseases. Therefore, enhancing the 20S proteasome degradation capacity and restoring protein homeostasis in myocardial cells with small molecule activators represent a promising therapeutic strategy for the treatment of ischemic cardiomyopathy. In this study, the lead compound 8016–8398 was identified through virtual screening, and subsequent structure optimization resulted in a series of highly potent 20S proteasome activators. Intracellular protein degradation assessment revealed that these compounds possessed abilities to alleviate endoplasmic reticulum stress, as demonstrated by the luciferase reporter system. Additionally, selected compound B-03 significantly enhanced the survival rate of hypoxic-damaged cardiomyocytes. Mechanistic investigations verified B-03 rescued hypoxic damaged cardiomyocyte through apoptosis inhibition and proliferation promotion.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.