Javaid Tantry , Zahir Shah , Ranjeev Misra , Naseer Iqbal , Sikandar Akbar
{"title":"Probing broadband spectral energy distribution and variability of Mrk 501 in the low flux state","authors":"Javaid Tantry , Zahir Shah , Ranjeev Misra , Naseer Iqbal , Sikandar Akbar","doi":"10.1016/j.jheap.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>We conducted a multi-wavelength analysis of the blazar Mrk<!--> <!-->501, utilizing observations from <em>Astro</em>Sat (SXT, LAXPC), <em>Swift-UVOT</em>, and <em>Fermi-LAT</em> during the period August 15, 2016 to March 27, 2022. The resulting multi-wavelength light curve revealed relatively low activity of the source across the electromagnetic spectrum. Notably, logparabola and broken power-law models provided a better fit to the joint X-ray spectra from <em>Astro</em>Sat-SXT/LAXPC instruments compared to the power-law model. During the low activity state, the source showed the characteristic “harder when brighter” trend at the X-ray energies. To gain insights into underlying physical processes responsible for the broadband emission, we performed a detailed broadband spectral analysis using the convolved one-zone leptonic model with different forms of particle distributions such as logparabola (LP), broken power-law (BPL), power-law model with maximum energy (<span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>), and energy-dependent acceleration (EDA) models. Our analysis revealed similar reduced-<span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> values for the four particle distributions. The LP and EDA models exhibited the lowest jet powers. The correlation analyses conducted for the LP and BPL models revealed that there is a positive correlation between jet power and bulk Lorentz factor. Specifically, in the LP model, jet power proved independent of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span>, whereas in the broken power-law model, jet power decreased with an increase in <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span>. The jet power in the LP/EDA particle distribution is nearly 10 percent of the Eddington luminosity of a 10<sup>7</sup> M<sub>⊙</sub> black hole. This result suggests that the jet could potentially be fueled by accretion processes.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 393-409"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824001101","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We conducted a multi-wavelength analysis of the blazar Mrk 501, utilizing observations from AstroSat (SXT, LAXPC), Swift-UVOT, and Fermi-LAT during the period August 15, 2016 to March 27, 2022. The resulting multi-wavelength light curve revealed relatively low activity of the source across the electromagnetic spectrum. Notably, logparabola and broken power-law models provided a better fit to the joint X-ray spectra from AstroSat-SXT/LAXPC instruments compared to the power-law model. During the low activity state, the source showed the characteristic “harder when brighter” trend at the X-ray energies. To gain insights into underlying physical processes responsible for the broadband emission, we performed a detailed broadband spectral analysis using the convolved one-zone leptonic model with different forms of particle distributions such as logparabola (LP), broken power-law (BPL), power-law model with maximum energy (), and energy-dependent acceleration (EDA) models. Our analysis revealed similar reduced- values for the four particle distributions. The LP and EDA models exhibited the lowest jet powers. The correlation analyses conducted for the LP and BPL models revealed that there is a positive correlation between jet power and bulk Lorentz factor. Specifically, in the LP model, jet power proved independent of , whereas in the broken power-law model, jet power decreased with an increase in . The jet power in the LP/EDA particle distribution is nearly 10 percent of the Eddington luminosity of a 107 M⊙ black hole. This result suggests that the jet could potentially be fueled by accretion processes.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.