{"title":"Improved MER algorithm for lost circulation detection using transient pressure waves","authors":"Zhongxi Zhu , Kangkai Yan , Wanneng Lei , Lei Cao","doi":"10.1016/j.geoen.2024.213467","DOIUrl":null,"url":null,"abstract":"<div><div>In order to solve the difficult problem of locating the leakage layer in the bare eye well section during drilling, this study proposes a transient pressure wave well leakage detection method based on the modified energy ratio (MER) analysis. The method makes clever use of the similarity between the transient pressure waveform and the first arrival of the microseismic signal, and accurately captures the sudden change moments of the pressure wave to obtain the time difference of the signal through the MER method, and combines with the wave velocity of the pressure wave to achieve the precise location of the leakage layer. To address the problem of high noise content in transient pressure wave signals, this study proposes an improved variational modal decomposition (VMD) adaptive denoising method, which effectively removes the noise components and retains the key features of the signals to the maximum extent, and the signal-to-noise ratio of the signal after noise reduction can be up to 15.64. The experimental results show that the leaky layer localisation error of the method ranges from 0.13% to 5.30%. Under the same conditions, the accuracy of the MER localisation method is better than that of the wavelet mode maxima method, the frequency domain method and the short-time averaging/long-time averaging (STA/LTA) method, and the localisation error rate can be as low as 2.11%. The transient pressure wave well leakage detection method based on the improved MER algorithm provides a low-cost, high-precision and efficient solution for well leakage detection during drilling.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"244 ","pages":"Article 213467"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891024008376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the difficult problem of locating the leakage layer in the bare eye well section during drilling, this study proposes a transient pressure wave well leakage detection method based on the modified energy ratio (MER) analysis. The method makes clever use of the similarity between the transient pressure waveform and the first arrival of the microseismic signal, and accurately captures the sudden change moments of the pressure wave to obtain the time difference of the signal through the MER method, and combines with the wave velocity of the pressure wave to achieve the precise location of the leakage layer. To address the problem of high noise content in transient pressure wave signals, this study proposes an improved variational modal decomposition (VMD) adaptive denoising method, which effectively removes the noise components and retains the key features of the signals to the maximum extent, and the signal-to-noise ratio of the signal after noise reduction can be up to 15.64. The experimental results show that the leaky layer localisation error of the method ranges from 0.13% to 5.30%. Under the same conditions, the accuracy of the MER localisation method is better than that of the wavelet mode maxima method, the frequency domain method and the short-time averaging/long-time averaging (STA/LTA) method, and the localisation error rate can be as low as 2.11%. The transient pressure wave well leakage detection method based on the improved MER algorithm provides a low-cost, high-precision and efficient solution for well leakage detection during drilling.