Kimberly Amador , Noah Pinel , Anthony J. Winder , Jens Fiehler , Matthias Wilms , Nils D. Forkert
{"title":"A cross-attention-based deep learning approach for predicting functional stroke outcomes using 4D CTP imaging and clinical metadata","authors":"Kimberly Amador , Noah Pinel , Anthony J. Winder , Jens Fiehler , Matthias Wilms , Nils D. Forkert","doi":"10.1016/j.media.2024.103381","DOIUrl":null,"url":null,"abstract":"<div><div>Acute ischemic stroke (AIS) remains a global health challenge, leading to long-term functional disabilities without timely intervention. Spatio-temporal (4D) Computed Tomography Perfusion (CTP) imaging is crucial for diagnosing and treating AIS due to its ability to rapidly assess the ischemic core and penumbra. Although traditionally used to assess acute tissue status in clinical settings, 4D CTP has also been explored in research for predicting stroke tissue outcomes. However, its potential for predicting functional outcomes, especially in combination with clinical metadata, remains unexplored. Thus, this work aims to develop and evaluate a novel multimodal deep learning model for predicting functional outcomes (specifically, 90-day modified Rankin Scale) in AIS patients by combining 4D CTP and clinical metadata. To achieve this, an intermediate fusion strategy with a cross-attention mechanism is introduced to enable a selective focus on the most relevant features and patterns from both modalities. Evaluated on a dataset comprising 70 AIS patients who underwent endovascular mechanical thrombectomy, the proposed model achieves an accuracy (ACC) of 0.77, outperforming conventional late fusion strategies (ACC = 0.73) and unimodal models based on either 4D CTP (ACC = 0.61) or clinical metadata (ACC = 0.71). The results demonstrate the superior capability of the proposed model to leverage complex inter-modal relationships, emphasizing the value of advanced multimodal fusion techniques for predicting functional stroke outcomes.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"99 ","pages":"Article 103381"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524003062","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Acute ischemic stroke (AIS) remains a global health challenge, leading to long-term functional disabilities without timely intervention. Spatio-temporal (4D) Computed Tomography Perfusion (CTP) imaging is crucial for diagnosing and treating AIS due to its ability to rapidly assess the ischemic core and penumbra. Although traditionally used to assess acute tissue status in clinical settings, 4D CTP has also been explored in research for predicting stroke tissue outcomes. However, its potential for predicting functional outcomes, especially in combination with clinical metadata, remains unexplored. Thus, this work aims to develop and evaluate a novel multimodal deep learning model for predicting functional outcomes (specifically, 90-day modified Rankin Scale) in AIS patients by combining 4D CTP and clinical metadata. To achieve this, an intermediate fusion strategy with a cross-attention mechanism is introduced to enable a selective focus on the most relevant features and patterns from both modalities. Evaluated on a dataset comprising 70 AIS patients who underwent endovascular mechanical thrombectomy, the proposed model achieves an accuracy (ACC) of 0.77, outperforming conventional late fusion strategies (ACC = 0.73) and unimodal models based on either 4D CTP (ACC = 0.61) or clinical metadata (ACC = 0.71). The results demonstrate the superior capability of the proposed model to leverage complex inter-modal relationships, emphasizing the value of advanced multimodal fusion techniques for predicting functional stroke outcomes.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.