{"title":"Salt dome identification using incremental semi-supervised learning and unsupervised learning-based label generation","authors":"Kui Wu , Wei Hu , Yu Qi , Yixin Yu , Sanyi Yuan","doi":"10.1016/j.jappgeo.2024.105552","DOIUrl":null,"url":null,"abstract":"<div><div>Salt domes represent distinctive geological anomalies in seismic data, crucial for pinpointing hydrocarbon reservoirs and strategizing drilling paths. Conventional seismic attributes or computer vision methods usually fail to capture the intricate details of salt domes, resulting in interpretation results marred by noise. While deep learning presents a promising approach for intelligent 3D salt dome interpretation, its effectiveness is heavily dependent on the availability of labeled samples. To facilitate accurate interpretation, we propose an innovative workflow that integrates an unsupervised label generation component with an incremental semi-supervised learning framework utilizing the U-Net architecture. To generate salt dome labels, we prioritize both the root mean square (RMS) amplitude attribute and variance attribute (VA) as foundational data. Utilizing convolutional autoencoders (CAE), we establish a relationship between the input RMS attribute and the output reconstructed attribute. The intermediate features extracted by CAE are transformed into the salt boundary feature via principal component analysis and K-Means clustering. Concurrently, we employ K-Means clustering on VA to ascertain the salt internal feature. We further propose a feature aggregation method to consolidate the salt boundary feature and the salt internal feature for label generation of the salt dome. For 3D salt dome interpretation, we begin by predicting adjacent test datasets using labels generated by the unsupervised salt dome label generation module. The prediction results of these test datasets are then integrated into the training datasets to enhance the interpretation performance of U-Net, steering it towards an incremental semi-supervised learning method for salt dome interpretation. Additionally, we extend this research by applying transfer learning techniques for identifying mound-shoals using the same semi-supervised model parameters initially developed for interpreting salt domes. This method is validated using datasets from the Netherlands F3 block for salt domes and the North China block for mound-shoals. The results demonstrate that this innovative process only requires a minimal number of labels from unsupervised methods to precisely interpret salt domes across 3D seismic data. Furthermore, the low-level features of salt domes learned from neural network can be seamlessly transferred to mound-shoal identification. This automated approach significantly streamlines the interpretation process, reducing the time and resources traditionally necessary for reservoir analysis.</div></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"230 ","pages":"Article 105552"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124002684","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Salt domes represent distinctive geological anomalies in seismic data, crucial for pinpointing hydrocarbon reservoirs and strategizing drilling paths. Conventional seismic attributes or computer vision methods usually fail to capture the intricate details of salt domes, resulting in interpretation results marred by noise. While deep learning presents a promising approach for intelligent 3D salt dome interpretation, its effectiveness is heavily dependent on the availability of labeled samples. To facilitate accurate interpretation, we propose an innovative workflow that integrates an unsupervised label generation component with an incremental semi-supervised learning framework utilizing the U-Net architecture. To generate salt dome labels, we prioritize both the root mean square (RMS) amplitude attribute and variance attribute (VA) as foundational data. Utilizing convolutional autoencoders (CAE), we establish a relationship between the input RMS attribute and the output reconstructed attribute. The intermediate features extracted by CAE are transformed into the salt boundary feature via principal component analysis and K-Means clustering. Concurrently, we employ K-Means clustering on VA to ascertain the salt internal feature. We further propose a feature aggregation method to consolidate the salt boundary feature and the salt internal feature for label generation of the salt dome. For 3D salt dome interpretation, we begin by predicting adjacent test datasets using labels generated by the unsupervised salt dome label generation module. The prediction results of these test datasets are then integrated into the training datasets to enhance the interpretation performance of U-Net, steering it towards an incremental semi-supervised learning method for salt dome interpretation. Additionally, we extend this research by applying transfer learning techniques for identifying mound-shoals using the same semi-supervised model parameters initially developed for interpreting salt domes. This method is validated using datasets from the Netherlands F3 block for salt domes and the North China block for mound-shoals. The results demonstrate that this innovative process only requires a minimal number of labels from unsupervised methods to precisely interpret salt domes across 3D seismic data. Furthermore, the low-level features of salt domes learned from neural network can be seamlessly transferred to mound-shoal identification. This automated approach significantly streamlines the interpretation process, reducing the time and resources traditionally necessary for reservoir analysis.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.