Synthesis and Characterization of Silver Nanoparticles (Ag), Magnetite Nanoparticles (Fe3O4), and Magnetite/Silver Core-Shell (Fe3O4/Ag) Nanoparticles, and Their Application against Drug-Resistant Bacteria
Fedda Alzoubi, Wajde BaniHani, Rehan BaniHani, Hasan Al-Khateeb, Mohammed Al-Qadi, Qais Al Bataineh
{"title":"Synthesis and Characterization of Silver Nanoparticles (Ag), Magnetite Nanoparticles (Fe3O4), and Magnetite/Silver Core-Shell (Fe3O4/Ag) Nanoparticles, and Their Application against Drug-Resistant Bacteria","authors":"Fedda Alzoubi, Wajde BaniHani, Rehan BaniHani, Hasan Al-Khateeb, Mohammed Al-Qadi, Qais Al Bataineh","doi":"10.1007/s10876-024-02708-8","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, metal and metal oxide nanoparticles have garnered significant scientific interest due to their distinctive properties and promising applications across diverse fields. This study details the successful synthesis and characterization of Fe<sub>3</sub>O<sub>4</sub>, Ag, and magnetite/silver core-shell (Fe<sub>3</sub>O<sub>4</sub>/Ag) nanocomposites, prepared through chemical reduction and co-precipitation methods. The successful incorporation of Ag into Fe<sub>3</sub>O<sub>4</sub> nanoparticles was confirmed through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Physical characterization revealed that the synthesized nanoparticles were small in size and highly pure. Their optical and electrical properties, including bandgap and electrical conductivity, were also characterized. The antibacterial activity of the synthesized Fe<sub>3</sub>O<sub>4</sub>, Ag, and Fe<sub>3</sub>O<sub>4</sub>/Ag nanoparticles was evaluated using Minimum Bactericidal Concentration (MBC) against pathogenic bacterial strains: <i>S. typhimurium</i>,<i> P. aeruginosa</i>, and <i>S. aureus</i>. The results demonstrated that Ag, Fe<sub>3</sub>O<sub>4,</sub> and Fe<sub>3</sub>O<sub>4</sub>/Ag nanoparticles could inhibit high concentrations of bacteria, indicating an excellent antimicrobial effect. Furthermore, the Fe<sub>3</sub>O<sub>4</sub>/Ag nanoparticles were found to be more effective than both Fe<sub>3</sub>O<sub>4</sub> and Ag nanoparticles in inhibiting the selected pathogenic bacteria strains: S. <i>typhimurium</i>,<i> P. aeruginosa</i>, and <i>S. aureus.</i></p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2979 - 2989"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02708-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, metal and metal oxide nanoparticles have garnered significant scientific interest due to their distinctive properties and promising applications across diverse fields. This study details the successful synthesis and characterization of Fe3O4, Ag, and magnetite/silver core-shell (Fe3O4/Ag) nanocomposites, prepared through chemical reduction and co-precipitation methods. The successful incorporation of Ag into Fe3O4 nanoparticles was confirmed through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Physical characterization revealed that the synthesized nanoparticles were small in size and highly pure. Their optical and electrical properties, including bandgap and electrical conductivity, were also characterized. The antibacterial activity of the synthesized Fe3O4, Ag, and Fe3O4/Ag nanoparticles was evaluated using Minimum Bactericidal Concentration (MBC) against pathogenic bacterial strains: S. typhimurium, P. aeruginosa, and S. aureus. The results demonstrated that Ag, Fe3O4, and Fe3O4/Ag nanoparticles could inhibit high concentrations of bacteria, indicating an excellent antimicrobial effect. Furthermore, the Fe3O4/Ag nanoparticles were found to be more effective than both Fe3O4 and Ag nanoparticles in inhibiting the selected pathogenic bacteria strains: S. typhimurium, P. aeruginosa, and S. aureus.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.