Hydrothermally Synthesized TiO2 Nanowires and Potential Application in Catalytic Degradation of p-Nitrophenol

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2024-10-13 DOI:10.1007/s10876-024-02717-7
Gaurav Singh Bisht, Ajay Singh
{"title":"Hydrothermally Synthesized TiO2 Nanowires and Potential Application in Catalytic Degradation of p-Nitrophenol","authors":"Gaurav Singh Bisht,&nbsp;Ajay Singh","doi":"10.1007/s10876-024-02717-7","DOIUrl":null,"url":null,"abstract":"<div><p>Pollutants from industrial effluents create a wide problem concerning harm to humans, the environment, and climate. This work focuses on developing TiO<sub>2</sub> nanowires (NWs) for photocatalytic activity and water treatment applications. The three different temperatures calcined TiO<sub>2</sub> nanowires were synthesized via hydrothermal method followed by subsequent calcination at various temperatures. The TiO<sub>2</sub> nanowires were analyzed using techniques such as UV spectroscopy, scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), TEM, and BET to investigate their structural, morphological, and surface properties. The FE-SEM and TEM micrographs of TiO<sub>2</sub> nanomaterial show well-defined wire morphology with an average size of 150–200 nm. All the synthesized nanowires show a significant band gap in the range of 3.42–3.56 eV associated with the UV region. The calculated BET surface area of the formed TiO<sub>2</sub> nanowires for T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>, and T<sub>3</sub> is 4.84, 124.5, 19.28, and 23.51 m<sup>2</sup>/g respectively. The results demonstrate its potential as an efficient and sustainable photocatalysis and dye degradation solution. The efficiency of the nanowires was analyzed through photocatalytic degradation experiments using model organic pollutants from nitrophenol under UV light irradiation. The outcomes show that the low-temperature calcined TiO<sub>2</sub> (T<sub>1</sub>) nanowires efficiently degraded PNP (para-nitrophenol) pollutants up to 76% in low pollutant concentration at 40⁰C in a UV visible cabinet and the percentage recovery of Catalyst is around 98%. due to their high surface area 124.5m<sup>2</sup>/g). The nanowires exhibit excellent photocatalytic activity, enabling effective degradation and mineralization of pollutants. Its ability to efficiently remove contaminants under UV or visible light irradiation makes it a sustainable and effective solution for treating wastewater from diverse industrial effluents.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3095 - 3111"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02717-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Pollutants from industrial effluents create a wide problem concerning harm to humans, the environment, and climate. This work focuses on developing TiO2 nanowires (NWs) for photocatalytic activity and water treatment applications. The three different temperatures calcined TiO2 nanowires were synthesized via hydrothermal method followed by subsequent calcination at various temperatures. The TiO2 nanowires were analyzed using techniques such as UV spectroscopy, scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), TEM, and BET to investigate their structural, morphological, and surface properties. The FE-SEM and TEM micrographs of TiO2 nanomaterial show well-defined wire morphology with an average size of 150–200 nm. All the synthesized nanowires show a significant band gap in the range of 3.42–3.56 eV associated with the UV region. The calculated BET surface area of the formed TiO2 nanowires for T0, T1, T2, and T3 is 4.84, 124.5, 19.28, and 23.51 m2/g respectively. The results demonstrate its potential as an efficient and sustainable photocatalysis and dye degradation solution. The efficiency of the nanowires was analyzed through photocatalytic degradation experiments using model organic pollutants from nitrophenol under UV light irradiation. The outcomes show that the low-temperature calcined TiO2 (T1) nanowires efficiently degraded PNP (para-nitrophenol) pollutants up to 76% in low pollutant concentration at 40⁰C in a UV visible cabinet and the percentage recovery of Catalyst is around 98%. due to their high surface area 124.5m2/g). The nanowires exhibit excellent photocatalytic activity, enabling effective degradation and mineralization of pollutants. Its ability to efficiently remove contaminants under UV or visible light irradiation makes it a sustainable and effective solution for treating wastewater from diverse industrial effluents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水热合成 TiO2 纳米线及其在对硝基苯酚催化降解中的潜在应用
工业废水中的污染物对人类、环境和气候造成了广泛的危害。这项工作的重点是开发具有光催化活性和水处理应用的二氧化钛纳米线(NWs)。通过水热法合成了三种不同温度煅烧的二氧化钛纳米线,然后在不同温度下进行煅烧。利用紫外光谱、扫描电子显微镜(FE-SEM)、X 射线衍射(XRD)、TEM 和 BET 等技术对二氧化钛纳米线进行了分析,以研究其结构、形态和表面特性。TiO2 纳米材料的 FE-SEM 和 TEM 显微照片显示出平均尺寸为 150-200 nm 的清晰线状形态。所有合成的纳米线都显示出明显的带隙,范围在 3.42-3.56 eV 之间,与紫外区相关。经计算,T0、T1、T2 和 T3 所形成的 TiO2 纳米线的 BET 表面积分别为 4.84、124.5、19.28 和 23.51 m2/g。这些结果证明了其作为一种高效、可持续的光催化和染料降解解决方案的潜力。在紫外光照射下,利用模型有机污染物硝基苯酚进行光催化降解实验,分析了纳米线的效率。结果表明,在紫外可见光箱中,40⁰C 的低浓度条件下,低温煅烧的 TiO2(T1)纳米线能有效降解 PNP(对硝基苯酚)污染物,降解率高达 76%,由于其比表面积高达 124.5m2/g),催化剂的回收率约为 98%。纳米线表现出卓越的光催化活性,能有效降解污染物并使其矿化。它能够在紫外线或可见光照射下有效去除污染物,是处理各种工业废水的可持续有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Synthesis of MIPs@H2S Nanoparticle Adsorbent for the Specific Adsorption of Hazardous Hydrogen Sulfide Gas: Approach to Optimization State-of-the-art of Synthesized PANI/NiCo2O4/CeO2 Nanocomposites by One-Step Polymerization for Use in Photodetectors Enhanced Elimination of Dyes from Aqueous Solution and Antioxidant Activity Using Ascorbic Acid-Functionalized Iron Oxide Nanocomposites Boosted Antioxidant and Photocatalytic Power: Reusable PEG-Coated Iron Oxide Nanocomposites for Effective Cephalexin and BCB Dye Degradation Potential of Silymarin and Metformin Co-Loaded Nanostructured Lipid Carriers Containing Mucoadhesive Thermogel on KB Cells of Oral Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1