Pyrimidine-containing covalent organic frameworks for efficient photosynthesis of hydrogen peroxide via one-step two electron oxygen reduction process

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-08-17 DOI:10.1007/s12274-024-6897-6
Hongyu Chen, Hao Zhang, Kai Chi, Yan Zhao
{"title":"Pyrimidine-containing covalent organic frameworks for efficient photosynthesis of hydrogen peroxide via one-step two electron oxygen reduction process","authors":"Hongyu Chen,&nbsp;Hao Zhang,&nbsp;Kai Chi,&nbsp;Yan Zhao","doi":"10.1007/s12274-024-6897-6","DOIUrl":null,"url":null,"abstract":"<div><p>The photocatalytic oxygen reduction reaction (ORR), particularly the one-step two-electron (2e<sup>−</sup>) pathway, is a highly promising strategy for efficient and selective hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) synthesis. However, constructing efficient photocatalysts to achieve a one-step 2e<sup>−</sup> ORR process remains a significant challenge. Herein, we developed an efficient photocatalyst by incorporating pyrimidine units into benzotrithiophene-based covalent organic framework (BTT-MD-COF), enabling the photosynthesis of H<sub>2</sub>O<sub>2</sub> via the one-step 2e<sup>−</sup> ORR pathway with O<sub>2</sub> and water. Under visible-light irradiation, BTT-MD-COF exhibited a high H<sub>2</sub>O<sub>2</sub> production rate of up to 5691.2 µmol·h<sup>−1</sup>·g<sup>−1</sup>. Further experimental results and theoretical studies revealed that the introduction of pyrimidine units accelerates the separation of photoinduced electron–hole pairs and promotes Yeager-type O<sub>2</sub> adsorption, which alters the two-step 2e<sup>−</sup> ORR process to the direct one-step 2e<sup>−</sup> process. This work offers a new avenue to create metal-free catalysts for efficient photosynthesis of H<sub>2</sub>O<sub>2</sub>.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9498 - 9506"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6897-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic oxygen reduction reaction (ORR), particularly the one-step two-electron (2e) pathway, is a highly promising strategy for efficient and selective hydrogen peroxide (H2O2) synthesis. However, constructing efficient photocatalysts to achieve a one-step 2e ORR process remains a significant challenge. Herein, we developed an efficient photocatalyst by incorporating pyrimidine units into benzotrithiophene-based covalent organic framework (BTT-MD-COF), enabling the photosynthesis of H2O2 via the one-step 2e ORR pathway with O2 and water. Under visible-light irradiation, BTT-MD-COF exhibited a high H2O2 production rate of up to 5691.2 µmol·h−1·g−1. Further experimental results and theoretical studies revealed that the introduction of pyrimidine units accelerates the separation of photoinduced electron–hole pairs and promotes Yeager-type O2 adsorption, which alters the two-step 2e ORR process to the direct one-step 2e process. This work offers a new avenue to create metal-free catalysts for efficient photosynthesis of H2O2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含嘧啶的共价有机框架通过一步双电子氧还原过程实现过氧化氢的高效光合作用
光催化氧还原反应(ORR),尤其是一步法双电子(2e-)途径,是一种极具前景的高效和选择性过氧化氢(H2O2)合成策略。然而,构建高效光催化剂以实现一步法 2e- ORR 过程仍然是一项重大挑战。在此,我们通过在苯并三噻吩基共价有机框架(BTT-MD-COF)中加入嘧啶单元,开发了一种高效光催化剂,使其能够与氧气和水通过一步式 2e- ORR 途径进行 H2O2 的光合作用。在可见光照射下,BTT-MD-COF 的 H2O2 生成率高达 5691.2 µmol-h-1-g-1。进一步的实验结果和理论研究表明,嘧啶单元的引入加速了光诱导电子-空穴对的分离,促进了耶格尔型 O2 吸附,从而将两步 2e ORR 过程改变为直接的一步 2e 过程。这项工作为创造无金属催化剂以实现 H2O2 的高效光合作用提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1