Quantitative study on the water vapor transport characteristics of an extreme precipitation event in North China

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2024-09-27 DOI:10.1002/asl.1269
Xiaofan Li, Yufei Chang, Changwen Yu, Zhiqiang Gong, Yunhao Li, Zhongjie Zhang, Shaojing Che
{"title":"Quantitative study on the water vapor transport characteristics of an extreme precipitation event in North China","authors":"Xiaofan Li,&nbsp;Yufei Chang,&nbsp;Changwen Yu,&nbsp;Zhiqiang Gong,&nbsp;Yunhao Li,&nbsp;Zhongjie Zhang,&nbsp;Shaojing Che","doi":"10.1002/asl.1269","DOIUrl":null,"url":null,"abstract":"<p>North China experienced an extreme precipitation event from July 29 to August 1, 2023 (i.e., the “23.7” event) causing severe floods, significant infrastructure damage and multiple fatalities. To enhance comprehension of the mechanism behind the extreme precipitation of the “23.7” event, water vapor transport paths and sources were determined, and water vapor contribution of each source was quantitatively evaluated based on Lagrangian methods. Results showed that the extreme precipitation of the “23.7” event was closely related to large-scale water vapor transport and convergence from low-latitude oceans. There were five main water vapor sources which corresponded to five transport pathways. Path 1 was derived from tropical West Pacific, containing the most trajectories (195), carrying the most water vapor (69.3%) and contributing the most to the extreme precipitation of the “23.7” event (45.7%). Path 2 was guided by the cross-equatorial flow through South China Sea, contributing to 10.1% of the precipitation. Path 3 originating from eastern tropical Indian Ocean and Path 4 from the west source near the Caspian Sea contributed less to the precipitation. Last but not the least, water vapor evaporation from eastern China contributed more than 30% to the extreme precipitation, making this region another important water vapor source.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 11","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1269","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1269","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

North China experienced an extreme precipitation event from July 29 to August 1, 2023 (i.e., the “23.7” event) causing severe floods, significant infrastructure damage and multiple fatalities. To enhance comprehension of the mechanism behind the extreme precipitation of the “23.7” event, water vapor transport paths and sources were determined, and water vapor contribution of each source was quantitatively evaluated based on Lagrangian methods. Results showed that the extreme precipitation of the “23.7” event was closely related to large-scale water vapor transport and convergence from low-latitude oceans. There were five main water vapor sources which corresponded to five transport pathways. Path 1 was derived from tropical West Pacific, containing the most trajectories (195), carrying the most water vapor (69.3%) and contributing the most to the extreme precipitation of the “23.7” event (45.7%). Path 2 was guided by the cross-equatorial flow through South China Sea, contributing to 10.1% of the precipitation. Path 3 originating from eastern tropical Indian Ocean and Path 4 from the west source near the Caspian Sea contributed less to the precipitation. Last but not the least, water vapor evaporation from eastern China contributed more than 30% to the extreme precipitation, making this region another important water vapor source.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
华北极端降水事件的水汽输送特征定量研究
2023 年 7 月 29 日至 8 月 1 日,华北地区发生了一次极端降水事件(即 "23.7 "事件),造成了严重的洪涝灾害、基础设施的重大损失和多人死亡。为深入理解 "23.7 "极端降水事件背后的机理,基于拉格朗日方法,确定了水汽输送路径和水汽源,并定量评估了各水汽源的水汽贡献。结果表明,"23.7 "事件的极端降水与大尺度水汽输送和低纬度海洋辐合密切相关。水汽主要有五个来源,对应五条输送路径。路径 1 来自热带西太平洋,包含最多的轨迹(195 条),携带最多的水汽(69.3%),对 "23.7 "事件的极端降水贡献最大(45.7%)。路径 2 由穿过中国南海的跨赤道流引导,占降水量的 10.1%。路径 3 来自热带印度洋东部,路径 4 来自里海附近的西源,对降水的贡献较小。最后但并非最不重要的是,来自中国东部的水汽蒸发对极端降水的贡献率超过 30%,使该地区成为另一个重要的水汽源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information Change detection of the Köppen climate zones in Southeastern Europe Issue Information Are convection-permitting climate projections reliable for urban planning over Africa? A case study of Johannesburg Diurnal asymmetry of surface albedo in a semi-arid grassland over the China's Loess Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1