Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning

Adam M. Krajewski, Allison M. Beese, Wesley F. Reinhart, Zi-Kui Liu
{"title":"Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning","authors":"Adam M. Krajewski, Allison M. Beese, Wesley F. Reinhart, Zi-Kui Liu","doi":"10.1038/s44335-024-00012-2","DOIUrl":null,"url":null,"abstract":"Diverse disciplines across science and engineering deal with problems related to compositions, which exist in non-Euclidean simplex spaces, rendering many standard tools inaccurate or inefficient. This work explores such spaces conceptually in the context of materials discovery, quantifies their computational feasibility, and implements several essential methods specific to simplex spaces through a new high-performance open-source library nimplex. Most significantly, we derive and implement an algorithm for constructing a novel n-dimensional simplex graph data structure, containing all discretized compositions and possible neighbor-to-neighbor transitions. Critically, no distance or neighborhood calculations are performed, instead leveraging pure combinatorics and order in procedurally generated simplex grids, keeping the algorithm $${\\mathcal{O}}(N)$$ , with minimal memory, enabling rapid construction of graphs with billions of transitions in seconds. Additionally, we demonstrate how such graph representations can be combined to homogeneously express complex path-planning problems, while facilitating efficient deployment of existing high-performance gradient descent, graph traversal, and other optimization algorithms.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00012-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00012-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diverse disciplines across science and engineering deal with problems related to compositions, which exist in non-Euclidean simplex spaces, rendering many standard tools inaccurate or inefficient. This work explores such spaces conceptually in the context of materials discovery, quantifies their computational feasibility, and implements several essential methods specific to simplex spaces through a new high-performance open-source library nimplex. Most significantly, we derive and implement an algorithm for constructing a novel n-dimensional simplex graph data structure, containing all discretized compositions and possible neighbor-to-neighbor transitions. Critically, no distance or neighborhood calculations are performed, instead leveraging pure combinatorics and order in procedurally generated simplex grids, keeping the algorithm $${\mathcal{O}}(N)$$ , with minimal memory, enabling rapid construction of graphs with billions of transitions in seconds. Additionally, we demonstrate how such graph representations can be combined to homogeneously express complex path-planning problems, while facilitating efficient deployment of existing high-performance gradient descent, graph traversal, and other optimization algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在组合空间中高效生成网格和遍历图,实现探索和路径规划
科学和工程领域的多个学科都在处理与组合相关的问题,这些问题存在于非欧几里得单纯形空间中,导致许多标准工具不准确或效率低下。这项研究从概念上探索了材料发现背景下的这类空间,量化了其计算可行性,并通过一个新的高性能开源库 nimplex 实现了几种针对单纯形空间的基本方法。最重要的是,我们推导并实现了一种构建新颖的 n 维单纯形图数据结构的算法,其中包含所有离散化组合和可能的邻域到邻域转换。重要的是,该算法不进行距离或邻域计算,而是利用纯粹的组合学和程序化生成的单纯形网格中的秩序,保持算法 $${mathcal{O}}(N)$$ 的最小内存,从而能够在数秒内快速构建具有数十亿次转换的图形。此外,我们还展示了如何将这种图表示法结合起来,同质地表达复杂的路径规划问题,同时促进现有高性能梯度下降、图遍历和其他优化算法的高效部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing with oscillators from theoretical underpinnings to applications and demonstrators Adiabatic leaky integrate and fire neurons with refractory period for ultra low energy neuromorphic computing Thermodynamic linear algebra Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning Demonstration of 4-quadrant analog in-memory matrix multiplication in a single modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1